Атф у кишечной палочки

У этого термина существуют и другие значения, см. АТФ.

Молекулярная модель АТФ-синтазы

Аденозинтрифосфатсинта́за (АТФ-синта́за, АТФ-фосфогидролаза, H+-transporting two-sector ATPase) — группа ферментов, относящихся к классу транслоказ, синтезирующих аденозинтрифосфат (АТФ) из аденозиндифосфата (АДФ) и неорганических фосфатов. Название по номенклатуре – АТФ-фосфогидролаза, однако, с августа 2018 года фермент перенесён из третьего (3.6.3.14) в седьмой класс (7.1.2.2[1]), так как катализируемая ферментом реакция протекает по обратному гидролизу пути, и не может быть описана с помощью других типов реакций остальных классов.

Энергию для синтеза АТФ-синтаза часто получает от протонов, проходящих по электрохимическому градиенту, например, из просвета хлоропласта в его строму, или же из межмембранного пространства в матрикс митохондрии. Реакция синтеза такова:

АДФ + Фн → АТФ + H2O

АТФ-синтазы очень важны для жизнедеятельности почти всех организмов, так как АТФ относится к так называемым макроэргическим соединениям, при гидролизе которых происходит освобождение значительного количества энергии.

Антибиотик олигомицин подавляет активность FO-компонента АТФ-синтазы митохондрий.

Структура и номенклатура[править | править код]

Имеющаяся в митохондриях АТФ-синтаза F1FO очень хорошо исследована.

  • компонент FO — трасмембранный домен,
  • компонент F1 находится вне мембраны, в матриксе.

АТФ-синтазный комплекс FOF1 по форме напоминает плодовое тело гриба, у которого компонент F1 — это шляпка, ножка — это γ-субъединица компонента F1, а «корни» гриба — компонент FO, заякоренный в мембране.

В структурно-функциональном плане АТФ-синтетаза состоит из двух крупных фрагментов, обозначаемых символами F1 и FO. Первый из них (фактор сопряжения F1) обращён в сторону матрикса митохондрии и заметно выступает из мембраны в виде сферического образования высотой 8 нм и шириной 10 нм. Он состоит из девяти субъединиц, представленных пятью типами белков. Полипептидные цепи трёх субъединиц α и стольких же субъединиц β уложены в похожие по строению белковые глобулы, которые вместе образуют гексамер (αβ)3, имеющий вид слегка приплюснутого шара. Подобно плотно уложенным долькам апельсина, последовательно расположенные субъединицы α и β образуют структуру, характеризующуюся осью симметрии третьего порядка с углом поворота 120°. В центре этого гексамера находится субъединица γ, которая образована двумя протяжёнными полипептидными цепями и напоминает слегка деформированный изогнутый стержень длиной около 9 нм. При этом нижняя часть субъединицы γ выступает из шара на 3 нм в сторону мембранного комплекса F0. Также внутри гексамера находится минорная субъединица ε, связанная с γ. Последняя (девятая) субъединица обозначается символом δ и расположена на внешней стороне F1.

Мембранная часть АТФ-синтетазы, называемая фактором сопряжения FO, представляет собой гидрофобный белковый комплекс, пронизывающий мембрану насквозь и имеющий внутри себя два полуканала для прохождения протонов водорода (ядер протия). Всего в состав комплекса FO входит одна белковая субъединица типа а, две копии субъединицы b, а также от 9 до 12 копий мелкой субъединицы c. Субъединица а (молекулярная масса 20 кДа) полностью погружена в мембрану, где образует шесть пересекающих её α-спиральных участков. Субъединица b (молекулярная масса 30 кДа) содержит лишь один сравнительно короткий погружённый в мембрану α-спиральный участок, а остальная её часть заметно выступает из мембраны в сторону F1 и закрепляется за расположенную на её поверхности субъединицу δ. Каждая из 9-12 копий субъединицы c (молекулярная масса 6-11 кДа) представляет собой сравнительно небольшой белок из двух гидрофобных α-спиралей, соединённых друг с другом короткой гидрофильной петлёй, ориентированной в сторону F1, а все вместе образуют единый ансамбль, имеющий форму погружённого в мембрану цилиндра. Выступающая из комплекса F1 в сторону FO субъединица γ как раз и погружена внутрь этого цилиндра и достаточно прочно зацеплена за него.

Номенклатура фермента имеет традиционное происхождение, поэтому довольно непоследовательна.

Обозначение компонента F1 является сокращением от «Fraction 1» (часть 1), а символом FO (в индексе записана буква O, а не ноль) обозначался участок связывания олигомицина.

Некоторые субъединицы фермента имеют также буквенные обозначения:

  • Греческие: α, β, γ, δ, ε
  • Латинские: a, b, c, d, e, f, g, h

Другие — более сложные обозначения:

  • F6 (от «Fraction 6»)
  • OSCP — белок, чувствительный к олигомицину (от англ. the oligomycin sensitivity conferral protein), ATP5O
  • A6L (названный так по названию гена, кодирующего его в митохондриальном геноме)
  • IF1 (фактор ингибирования 1), ATPIF1

Компонент F1 достаточно велик (диаметр его составляет 9 нм), чтобы быть видимым в трансмиссионный электронный микроскоп при негативном окрашивании[2].

Частичками F1 усеяна внутренняя митохондриальная мембрана. Изначально считалось, что они содержат весь дыхательный аппарат митохондрии. Однако после долгих экспериментов группа Эфраима Рекера (впервые выделившая компонент F1 в 1961) показала, что эти частички связаны с АТФазной активностью в том числе и в разделённых митохондриях, и в субмитохондриальных частицах, формирующихся при ультразвуковом воздействии на митохондрии. Множество дальнейших исследований в разных лабораториях подтвердили эту АТФазную активность.

Читайте также:  Что убивает кишечную палочку в мочевом пузыре

Модель синтеза АТФ: механический катализ[править | править код]

В 60—70 годах XX века Пол Бойер предположил, что синтез АТФ связан с изменениями конфигурации АТФ-синтазы, вызываемыми вращением γ-субъединицы, так называемый механизм изменения участка связывания («перевёртыш», англ. flip-flop). Исследовательской группе под руководством Джона Э. Уокера, относившейся тогда к Лаборатории молекулярной биологии в Кембридже, удалось выделить АТФ-синтазный каталитический комплекс F1 в кристаллической форме. На тот момент это была самая крупная из известных науке асимметричная белковая структура. Её исследования показали, что модель вращающегося катализа, предложенная Бойером, соответствует действительности. За это открытие Бойер и Уокер получили половину Нобелевской премии по химии в 1997 году. Вторую половину получил Йенс Кристиан Скоу «за первое открытие фермента, осуществляющего транспорт ионов — Na+,K+-аденозинтрифосфатазы».

Механизм действия АТФ-синтазы. АТФ показан красным, АДФ и фосфат — розовым, вращающаяся субъединица γ — черным.

Кристалл F1 состоит из перемежающихся α- и β-субъединиц (по 3 каждого вида), расположенных как дольки апельсина вокруг асимметричной γ-субъединицы.
В соответствии с принятой моделью синтеза АТФ (также называемой моделью непостоянного катализа), градиент электрического поля, направленный поперёк внутренней митохондриальной мембраны и обусловленный электронной транспортной цепочкой, заставляет протоны проходить сквозь мембрану через АТФ-синтазный компонент FO.
Часть компонента FO (кольцо из c-субъединиц) вращается, когда протоны проходят через мембрану. Это c-кольцо жёстко связано с асимметричной центральной ножкой (состоящей в основном из γ-субъединицы), которая в свою очередь вращается внутри α3β3-участка компонента F1. Это приводит к тому, что три участка катализа, связывающиеся с нуклеотидами, претерпевают изменения в конфигурации, приводящие к синтезу АТФ.

Основные субъединицы (α3β3) компонента F1 соединены дополнительной боковой ножкой с неподвижным участком FO, что предотвращает их вращение вместе с γ-субъединицей.
Структура неповрёжденной АТФ-синтазы с низкой точностью выявлена при помощи электронной криомикроскопии (ЭКМ). Показано, что боковая ножка — это гибкая перемычка, похожая на канат, наматывающаяся на комплекс во время его работы.

При каждом обороте γ-субъединицы на 3600 синтезируются три молекулы АТФ, При этом, видимо, у разных организмов из межмембранного пространства в матрикс проходит от 10 до 14 протонов — по числу с-субъединиц[3].

В определённых условиях каталитическая реакция может протекать в обратном направлении, при этом гидролиз АТФ вызывает прокачку протонов через мембрану.

В механизме изменения участка связывания задействован активный участок β-субъединицы, последовательно проходящий через три состояния[4].

В «открытом» состоянии АДФ и фосфат подходят к активному участку. Затем белок охватывает эти молекулы и свободно связывается с ними («свободное» состояние). Следующее изменение формы белка прижимает молекулы друг к другу («тесное» состояние), что приводит к формированию АТФ. Наконец, активный участок снова переходит в «открытое» состояние, освобождает АТФ и связывает следующую молекулу АДФ и фосфата, после чего цикл производства АТФ повторяется.

Физиологическое значение[править | править код]

Как и у многих других ферментов, действие АТФ-синтазы F1FO обратимо. Большие концентрации АТФ заставляют её расщеплять АТФ и создавать трансмембранный протонный градиент. Такое использование АТФ-синтазы отмечено у анаэробных бактерий, не имеющих электронной транспортной цепочки. Эти бактерии применяют гидролиз АТФ для создания протонного градиента, который задействован в движении жгутиков и клеточном питании.

У аэробных бактерий в нормальных условиях АТФ-синтаза, как правило, работает в обратном направлении, производя АТФ за счёт энергии электрохимического потенциала, создаваемого электронной транспортной цепочкой.
В целом данный процесс называется окислительным фосфорилированием.
Он протекает и в митохондриях эукариот, на внутренней мембране которых расположены молекулы АТФ-синтазы, причём компонент F1 находится в матриксе, где и протекает процесс синтеза АТФ из АДФ и фосфата.

КПД АТФ-синтазы близок к 100%[5].

АТФ-синтаза у разных организмов[править | править код]

АТФ-синтаза растений[править | править код]

У растений АТФ-синтаза CF1FO присутствует в хлоропластах. Она встроена в мембрану тилакоида, причём компонент CF1 выступает в строму, где протекают темновые реакции фотосинтеза (также называемые светонезависимыми реакциями цикла Кальвина). Структура и механизм катализа АТФ-синтазы хлоропластов почти такая же, как и в митохондриях. Однако электрохимический потенциал у хлоропластов формируется не дыхательной электрон-транспортной цепочкой, а другими комплексами — фотосистемой II и цитохромным комплексом b6/f.

АТФ-синтаза E. coli[править | править код]

АТФ-синтаза кишечной палочки — самая простая из всех известных АТФ-синтаз. Она состоит всего из 8 видов субъединиц.

АТФ-синтаза дрожжей[править | править код]

Напротив, АТФ-синтаза дрожжей — самая сложная из известных. Она состоит из 20 различных видов субъединиц.

Эволюция АТФ-синтазы[править | править код]

Эволюция АТФ-синтазы считается примером модульной эволюции, при которой две субъединицы, каждая обладающая своими функциями, соединились и получили новые функции.

Гексамер α3β3, входящий в состав компонента F1 проявляет существенное сходство с гексамерной ДНК-геликазой. Оба типа ферментов образуют кольцо с вращательной симметрией 3 порядка, обладающее центральной пóрой. Действие каждого из них также зависит от относительного вращения макромолекулы внутри поры: геликазы используют спиральную форму ДНК для движения вдоль неё и для обнаружения суперскручивания, тогда как α3β3-гексамер использует изменения своей конфигурации из-за вращения γ-субъединицы для осуществления каталитической реакции.

Читайте также:  Кишечная палочка как избавиться от нее

Протонный мотор компонента FO проявляет большое функциональное сходство с протонными моторами жгутиков. И там, и там присутствует кольцо из множества небольших богатых α-спиралями белков, вращающихся относительно соседних неподвижных белков за счёт энергии протонного градиента. Это, конечно, очень зыбкое сходство, так как структура жгутиковых моторов гораздо сложнее, чем FO, а вращающееся белковое кольцо гораздо крупнее и состоит из 30 субъединиц против 10, 11 или 14, входящих в состав компонента FO.

Теория молекулярной эволюции предполагает, что две субъединицы с независимыми функциями — ДНК-геликаза с дополнительным АТФ-азным действием и протонный мотор — смогли соединяться, причём вращение мотора вызывало проявление АТФ-азной активности геликазы. Или же, наоборот, в первичной связке ДНК-геликазы и протонного мотора гидролиз АТФ на геликазе заставлял работать протонный мотор. Это соединение затем постепенно оптимизировалось, получило возможность катализировать обратную реакцию и через какое-то время превратилось в сложную АТФ-синтазу, существующую в настоящее время. Однако, до сих пор неясен механизм происхождения протонного мотора, который без геликазы или других комплексов не представляет никакой пользы.

См. также[править | править код]

  • Окислительное фосфорилирование
  • Митохондрия
  • Хлоропласт
  • Дыхательная электронтранспортная цепь
  • Протонный насос
  • Аденозинтрифосфатазы

Примечания[править | править код]

  1. Международный союз биохимии и молекулярной биологии. EC 7.1.2.2. IUBMB Enzyme Nomenclature (август 2018).
  2. ↑ Fernandez-Moran et al., Journal of Molecular Biology, Vol 22, p 63, 1962
  3. ↑ Протонный градиент АТФ-синтетазы  (англ.)
  4. Gresser M.J., Myers J.A., Boyer P.D. Catalytic site cooperativity of beef heart mitochondrial F1 adenosine triphosphatase. Correlations of initial velocity, bound intermediate, and oxygen exchange measurements with an alternating three-site model (англ.) // J. Biol. Chem. : journal. — 1982. — Vol. 257, no. 20. — P. 12030—12038. — PMID 6214554.
  5. ↑ K. Kinosita, Jr. R. Yasuda, H. Noji, K. Adachi. А rotary molecular motor that can work at near 100% efficiency. Philos Trans R Soc Lond B Biol Sci. 2000 April 29; 355(1396): 473—489.

Литература[править | править код]

  • Ю. М. Романовский, А. Н. Тихонов. Молекулярные преобразователи энергии живой клетки. Протонная АТФ-синтаза — вращающийся молекулярный мотор (рус.) // УФН. — 2010. — Т. 180. — С. 931—956.

Ссылки[править | править код]

  • «АТФ-синтаза — чудесная молекулярная машина»  (англ.)
  • Хорошо проиллюстрированная лекция об АТФ-синтазе, прочитанная Энтони Крофтсом в Университете Иллинойса в Урбана-Шампен (англ.)
  • Протонные и натриевые насосы-АТФазы типа F, V и A в базе данных OPM  (англ.)
  • Нобелевская премия по химии за 1997 год, присуждённая Полу Д. Бойеру и Джону Э. Уокеру за открытие ферментного механизма синтеза АТФ, и Йенсу К. Скоу за открытие ионно-транспортного фермента Na+, K±АТФазы  (англ.)
  • Harvard Multimedia Production Site — видеоролик, показывающий синтез АТФ

Источник

Бактериофаг коли
Инструкция по медицинскому применению – РУ № Р N001977/01

Дата последнего изменения: 27.04.2017

Лекарственная форма

Раствор для приема внутрь, местного и наружного применения.

Состав

Препарат представляет собой стерильный фильтрат фаголизатов патогенных штаммов Escherichia coli. Вспомогательное вещество: консервант – 8-гидроксихинолина сульфата моногидрат – 0,0001 г/мл (в пересчете на 8-гидроксихинолина сульфат, содержание расчетное).

Описание лекарственной формы

Представляет собой прозрачную жидкость желтого цвета.

Фармакологическая группа

МИБП – бактериофаг.

Фармакологические (иммунобиологические) свойства

Препарат обладает способностью специфически лизировать бактерии энтеропатогенной кишечной палочки.

Показания

Лечение и профилактика заболеваний, вызванных бактериями E.coli в составе комплексной терапии:

  •          заболевания уха, горла, носа, дыхательных путей и легких (воспаления пазух носа, среднего уха, ангина, фарингит, ларингит, трахеит, бронхит, пневмония, плеврит);
  •          хирургические инфекции (нагноения ран, ожоги, абсцесс, флегмона, фурункулы, карбункулы, гидраденит, панариции, парапроктит, мастит, бурсит, остеомиелит);
  •          урогенитальные инфекции (уретрит, цистит, пиелонефрит, кольпит, эндометрит, сальпингоофорит);
  •          энтеральные инфекции (гастроэнтероколит, холецистит), дисбактериоз кишечника;
  •          генерализованные септические заболевания;
  •          гнойно-воспалительные заболевания новорожденных (омфалит, пиодермия, конъюнктивит, гастроэнтероколит, сепсис и др.);
  •          другие заболевания, вызванные кишечной палочкой.

С профилактической целью препарат используют для обработки послеоперационных и свежеинфицированных ран, а также для профилактики внутрибольничных инфекций по эпидемическим показаниям.

Важным условием эффективной фаготерапии является предварительное определение фагочувствительности возбудителя.

Противопоказания

Гиперчувствительность к компонентам препарата.

Применение при беременности и кормлении грудью

Применение данного медицинского препарата при беременности и в период кормления грудью возможно при наличии – инфекций, вызванных фагочувствительными штаммами бактерий (по рекомендации врача).

Способ применения и дозы

Препарат используют для приема внутрь (через рот), ректального введения, аппликаций, орошений, введения в полости ран, вагины, матки, носа, пазух носа и дренированные полости.

Рекомендуемые дозировки препарата

ВОЗРАСТ ПАЦИЕНТАДОЗА НА 1 ПРИЕМ (мл)
внутрьв клизме
0-6 мес55-10
6-12 мес1010-20
От 1 года до 3 лет1520-30
От 3 до 8 лет15-2030-40
От 8 лет и старше20-3040-50
Читайте также:  Кишечная палочка в детском саду что

Лечение гнойно-воспалительных заболеваний с локализованными поражениями должно проводиться одновременно как местно, так и приемом препарата внутрь в течение 7-20 дней (по клиническим показаниям).

В случае если до применения бактериофага для лечения ран применялись химические антисептики, рана должна быть тщательно промыта стерильным . 0,9% раствором натрия хлорида.

В зависимости от очага инфекции бактериофаг применяют:

1.       В виде орошения, примочек и тампонирования в объеме, до 200 мл в зависимости от размеров пораженного участка. При абсцессе после удаления гнойного содержимого с помощью пункции препарат вводят в количестве меньшем, чем объем удаленного гноя. При остеомиелите после соответствующей хирургической обработки в рану вливают бактериофаг по 10-20 мл.

2.       При введении в полости (плевральную, суставную и другие ограниченные полости) до 100 мл оставляют капиллярный дренаж, через который бактериофаг вводят в течение нескольких дней.

3.       При циститах, пиелонефритах, уретритах препарат принимают внутрь. В случае, если полость мочевого пузыря или почечной лоханки дренированы, бактериофаг вводят через цистостому или нефростому 1-2 раза в день по 20:50 мл в мочевой пузырь и по 5-7 мл в почечную лоханку.

4.       При гнойно-воспалительных гинекологических заболеваниях препарат вводят в полость вагины, матки в дозе 5-10 мл ежедневно однократно, при кольпите – по 10 мл орошением или тампонированием 2 раза в день. Тампоны закладывают на 2 часа.

5.       При гнойно-воспалительных заболеваниях уха, горла, носа препарат вводят в дозе 2-10 мл 1-3 раза в день. Бактериофаг используют для полоскания, промывания, закапывания, введения смоченных турунд (оставляя их на 1 час).

6.       При энтеральных инфекциях, дисбактериозе кишечника препарат принимают внутрь 3 раза в день за 1 ч до приема пищи в течение 7-20 дней по клиническим показаниям. Возможно сочетание двукратного приема внутрь с однократным ректальным введением разовой возрастной дозы бактериофага в виде клизмы после опорожнения кишечника.

Применение бактериофага у детей (до 6 месяцев)

При сепсисе, энтероколите новорожденных, включая недоношенных детей, бактериофаг применяют в виде высоких клизм (через газоотводную трубку или катетер) 2-3 раза в сутки в дозе 5-10 мл. При отсутствии рвоты и срыгивания возможно применение препарата через рот. В этом случае он смешивается с грудным молоком. Возможно сочетание ректального (в виде высоких клизм) и перорального (через рот) применения препарата. Курс лечения 5-15 дней. При рецидивирующем течении заболевания возможно проведение повторных курсов лечения. С целью профилактики сепсиса и энтероколита при внутриутробном инфицировании или опасности возникновения внутрибольничной инфекции у новорожденных детей бактериофаг применяют в виде клизм 2 раза в день в течение 5-7 дней.

При лечении омфалита, пиодермии, инфицированных ран препарат применяют в виде аппликаций ежедневно двукратно (марлевую салфетку смачивают бактериофагом и накладывают на пупочную ранку или пораженный участок кожи).

Побочные действия

Не установлены.

Передозировка

Симптомы передозировки, меры по оказанию помощи при передозировке

Не установлены.

Взаимодействие

Применение бактериофага не исключает использования других антибактериальных препаратов.

Меры предосторожности

Перед использованием флакон с бактериофагом необходимо взболтать и просмотреть. Препарат должен быть прозрачным и не содержать осадка.

Внимание! При помутнении препарат не применять!

Вследствие содержания в препарате питательной среды, в которой могут развиваться бактерии из окружающей среды, вызывая помутнение препарата, необходимо при вскрытии флакона соблюдать следующие правила:

  •          тщательно мыть руки;
  •          обработать колпачок спиртсодержащим раствором; снять колпачок, не открывая пробки;
  •          не класть пробку внутренней поверхностью на стол или другие предметы;
  •          не оставлять флакон открытым;
  •          вскрытый флакон хранить только в холодильнике.

Вскрытие флакона и извлечение необходимого объема препарата может проводиться стерильным шприцем путем прокола пробки.

Препарат из вскрытого флакона при соблюдении; условий хранения, вышеперечисленных правил и отсутствии помутнения может быть использован в течение всего срока годности.

Особые указания

Сведения о возможном влиянии лекарственного препарата на способность, управлять транспортными средствами, механизмами

Отсутствуют.

Форма выпуска

Во флаконах по 20 или 100 мл. 4 или 10 флаконов по 20 мл или 1 флакон по 100 мл с инструкцией по применению в пачке из картона.

Условия хранения

Условия транспортирования

В соответствии с СП 3.3.2.1248-03 при температуре от 2 до 8°С. Допускается транспортирование при температуре от 9 до 25°С не более 1 месяца.

Условия хранения

Препарат хранят в соответствии с СП 3.3.2.1248-03 в сухом защищенном от света и недоступном для детей месте при температуре от 2 до8°С.

Срок годности

Срок годности 2 года. Препарат с истекшим сроком годности применению не подлежит.

Условия отпуска из аптек

Отпускается без рецепта.

Источник