Фаг кишечной палочки проникает в клетку путем

Оглавление темы “Генетика вирусов. Вирусные инфекции. Вирусы бактерий. Бактериофаги.”:

1. Комплементация вирусов. Фенотипическое смешивание вирусов. Маскирование вирусов.

2. Интерферирующие взаимодействия вирусов. Интерференция вирусов. Гетерологическая интерференция вирусов. Гомологическая интерференция вирусов.

3. Факторы специфичности вирусов. Вирулентность вирусов. Особенности макроорганизма при инфицировании.

4. Вирусные инфекции. Особенности патогенеза вирусных инфекций. Основные этапы патогенеза вирусных инфекций.

5. Типы вирусных инфекций. Продуктивная вирусная инфекция. Абортивная вирусная инфекция. Персистирующая инфекция. Латентная (скрытая) вирусная инфекция. Инаппарантные инфекции.

6. Заражение клеток вирусом. Зараженные вирусом клетки. Основные реакции зараженных вирусом клеток.

7. Вирусы бактерий. Бактериофаги. Классификация бактериофагов. Морфология бактериофагов. Типы бактериофагов.

8. Головка Т-фагов ( бактериофагов ). Хвост Т-фагов ( бактериофагов ).

9. Размножение бактериофагов. Адсорбция бактериофага. Инъекция фага. Репродукция бактериофага. Выход дочерних популяций бактериофага. Негативные колонии бактериофага.

10. Лизогения. Лизогенные культуры. Провирусы. Профаги. Лизогенная ( фаговая ) конверсия.

Вирусы бактерий. Бактериофаги. Классификация бактериофагов. Морфология бактериофагов. Типы бактериофагов.

Бактериофаги [от бактерии, + греч. phagein, поедать] — группа вирусов, паразитирующих в бактериальных клетках. Вирусы, вызывающие гибель инфицированных бактерий, известны как литические бактериофаги. Размножение и выход дочерних популяций вируса из бактерии сопровождается её гибелью и разрушением (лизисом). Бактериофаги широко распространены в природе — их выделяют из воды, почвы, организмов различных животных и человека. Принципы классификации бактериофагов аналогичны подходам к систематике вирусов вообще.

В основу классификации положены антигенная структура, морфология фагов, спектр действия, химический состав и др. Большинство фагов относится к ДНК-содержащим вирусам с нуклео-капсидом, организованным по принципу смешанной симметрии. По спектру действия выделяют типовые фаги (Т-фаги), лизирующие бактерии отдельных типов внутри вида, моновалентные фаги, лизирующие бактерии одного вида, и поливалентные фаги, лизирующие бактерии нескольких видов. Бактериофаги устойчивы к различным физическим и химическим воздействиям. Большинство из них без вреда переносит высокие температуры (50-70 °С), действие дезинфектаитов (за исключением кислот и формалина), прямой солнечный свет и УФ-облучение в низких дозах. Бактериофаги проявляют иммуногенные свойства, вызывая синтез специфических AT.

Вирусы бактерий. Бактериофаги. Классификация бактериофагов. Морфология бактериофагов. Типы бактериофагов
Рис. 5-10. Фаг Т4 кишечной палочки до контакта с бактерией (А) и в момент введения фаговой ДНК (Б).

Морфология бактериофагов. Типы бактериофагов

Строение бактериофагов наиболее полно охарактеризовано на основе изучения Т-фагов кишечной палочки (рис. 5-10). Внешне большинство бактериофагов напоминают сперматозоиды или головастиков, но среди них встречают и другие формы, на основании которых выделяют пять основных типов бактериофагов.

К типу I бактериофагов относят ДНК-содержащие нитевидные фаги, лизирующие бактерии, содержащие F-плазмиды.

Фаги типа II представлены головкой и рудиментом хвоста. Геном большинства из них образован молекулой РНК и лишь у фага jc-174 — однонитевой ДНК.

Бактериофаги типа III имеют короткий хвост (например, Т-фаги 3 и 7).

Вирусы бактерий. Бактериофаги. Классификация бактериофагов. Морфология бактериофагов. Типы бактериофагов

К типу IV относят фаги с несокращаюшимся хвостом и двухнитевой ДНК (например, Т-фаги 1 и 5).

Фаги типа V имеют ДНК-геном, сокращающийся чехол хвоста, который заканчивается базаль-ной пластиной (например, Т-фаги 2 или 4).

– Также рекомендуем “Головка Т-фагов ( бактериофагов ). Хвост Т-фагов ( бактериофагов ).”

Источник

Как протекает фаговая инфекция

Начинается все с того, что вирусная частица случайно сталкивается с клеткой бактерии. Фаг способен заразить вовсе не любую бактерию. Например, фаг, заражающий кишечную палочку, не замечает – сколько бы он с ними ни сталкивался – клетки стафилококка, и наоборот. Больше того, у той же кишечной палочки известно много разновидностей (их называют штаммами), и фаги, как правило, способны очень хорошо их различать. Они охотно заражают одни штаммы и совершенно игнорируют другие. Почему так происходит? Дело в том, что на поверхности бактериальной клетки есть структуры, к которым базальная пластинка фага по форме подходит, как ключ к замку. Такие структуры называются рецепторами. Есть рецептор для данного фага – фаг способен заражать эту бактерию, а эта бактерия способна стать его хозяином. Не подходит ключик? – Ну, стало быть, эта бактерия не для него.

Возникает вопрос, почему бактериальная клетка вынуждена жить под постоянной угрозой фаговой интервенции, не проще ли незаметно потерять где–то эти рецепторы и стать неприступной для фага? Но фаг тоже не прост, он использует в качестве причала структуры, предназначенные не для него, а совсем для других целей и жизненно важные для клетки, у которой, стало быть, есть веские причины не лишаться их.

Читайте также:  Чем опасна кишечная палочка у мужчин

Если фаг и бактерия узнали друг друга, фаг прочно связывается с ее поверхностью. Дальнейшая задача вируса состоит в том, чтобы ввести свой генетический материал внутрь бактериальной клетки, не нанеся ей – до поры до времени – вреда. Вот как это делает, например, фаг Т4, заражающий кишечную палочку – обычного обитателя нашего кишечника.

Бактериофаг Т4 является одним из наиболее сложно устроенных вирусов. Несколько вытянутая головка служит контейнером для хранения нуклеиновой кислоты. Сокращение чехла обеспечивает прободение бактериальной стенки. По внутреннему каналу стержневого отростка фаговая ДНК перемещается внутрь бактериальной клетки. К шестиугольной базальной пластинке крепятся длинные нити – фибриллы, которые обеспечивают начальный контакт фага с поверхностью бактерии. Чехол с одной стороны жестко закреплен на фаговой головке, а с другой прикреплен к базальной пластинке, находящейся на конце отростка. Чехол заметно короче отростка, поэтому, подобно пружине, пребывает в растянутом состоянии. После стыковки фага с бактерией форма базальной пластинки меняется, она больше не может удерживать чехол в растянутом состоянии, тот сжимается, и жесткий стержень как бы выстреливает из чехла, проминая клеточную стенку бактерии.

Бактериофаг Т4: 1 – головка; 2отросток, покрытый чехлом;3базальная пластинка; 4длинные фибриллы

Одного механического усилия недостаточно. Прогибаясь, клеточная стенка успешно сопротивляется попытке фагового отростка проткнуть ее, но оказывается бессильной противостоять секретному оружию фага – ферменту лизоциму, который находится вблизи острия отростка и, войдя в плотный контакт с клеточной стенкой, моментально прогрызает в ней дыру. Наконец–то стержень отростка пронзает клеточную стенку насквозь. Тут же по внутреннему каналу отростка, как сквозь игольное ушко, в бактерию впрыскивается нуклеиновая кислота, до того момента покоившаяся в фаговой головке.

На первый взгляд, задача может показаться не слишком сложной, но надо учесть, что молекула ДНК – очень длинная и чрезвычайно плотно упакована. Если уж сравнивать внутренний диаметр канала с игольным ушком, то в этом масштабе длина нити ДНК будет около метра, а скорость ее разматывания напоминает разматывание лески с катушки спиннинга при забрасывании блесны. И протащить нить надо так, чтобы не порвать ее. Порванная даже в одном месте, она уже неинфекционна и, стало быть, совершенно безвредна для бактерии и абсолютно бесполезна для фага.

Большинство фагов не имеют сократимого чехла, не говоря уже о том, что у многих и отростка–то никакого нет, ни большого, ни маленького. А преграда на пути серьезная – клеточная стенка бактерии. Она состоит из нескольких слоев и, подобно неповрежденной коже человека или кутикуле на поверхности листа, совершенно непроницаема для вируса. Как–то ее надо продырявить, и, так или иначе, все фаги умеют это делать.

Например, многие фаги связываются только с половыми пилями – нитевидными выростами на мужских клетках кишечной палочки. Да, как ни удивительно, у бактерий есть пол, мужской и женский, а у мужских клеток есть вырост, с помощью которого они конъюгируют с женской клеткой. Облепив вырост, фаги внедряют свою нуклеиновую кислоту в клетку бактерии. В общем, тем или иным способом, но фаги вводят свой генетический материал внутрь бактериальной клетки, оставляя на поверхности пустую, никому уже не нужную белковую оболочку.

Фаговая ДНК проникла внутрь бактерии. 1фаговая ДНК; 2стенка бактериальной клетки; 3сократившийся чехол; 4длинные фибриллы

С этого момента все меняется для бактериальной клетки. Вирус на время как бы исчезает. В клетке, куда проникла фаговая нуклеиновая кислота, не удается обнаружить никаких вирусных частиц. Более того, зараженная клетка выглядит совершенно нормальной. Но на самом деле жить ей осталось всего несколько минут. Под покровом клеточной стенки фаг начинает свое черное дело. Он заставляет все клеточные структуры работать на себя. Все ресурсы клетки отныне тратятся только на размножение фаговой ДНК, самой клетке уже ничего не достается. Белки образуются только фаговые, синтез клеточных компонентов совершенно подавлен или осуществляется лишь в той мере, в которой это нужно фагу. Многочисленные копии вновь образованной фаговой ДНК упаковываются в форме многогранника. Сверху они покрываются фаговым белком, и возникает зрелая фаговая головка с упакованной внутри нее ДНК. В другом месте клетки, в другом ее помещении налажено производство и сборка других фаговых белков, из которых образуется хвостовой отросток. Наконец, отростки и головки соединяются в полноценную фаговую частицу. Проникла в бактерию нуклеиновая кислота одной–единственной фаговой частицы, а теперь, через полчаса, их уже больше сотни. Им тесно, им пора покидать эту бактерию, с которой уже нечего взять. Вот только как это сделать? Бактерия мертва, но ее клеточная стенка все еще надежно удерживает взаперти многочисленное фаговое потомство.

Читайте также:  Как быстро избавиться от кишечной палочки

Продольный разрез фага с пустой головкой: 1фибриллы, прикрепленные к головке;2“воротничок”; 3отросток;4канал, проходящий внутри отростка

И вновь приходит на помощь фаговый лизоцим. Он подгрызает клеточную стенку обреченной бактерии изнутри до тех пор, пока она достаточно не истончится и в конце концов не разорвется. Фаговое потомство выходит наружу и немедленно набрасывается на соседние бактерии, которые ожидает та же участь.

Такая инфекция называется продуктивной, а фаги, вызывающие продуктивную инфекцию – вирулентными.

Следующая глава >

Похожие главы из других книг:

Менингококковая инфекция
При менингококковой инфекции температура тела может колебаться от субфебрильной до очень высокой (до 42 °C). Температурная кривая может быть постоянного, интермиттирующего и ремиттирующего типа. На фоне антибиотикотерапии температура

Менингококковая инфекция
Рвота характерна и для такого серьезного заболевания, как менингококковая инфекция. Существует несколько форм этой инфекции, однако рвота чаще сопутствует менингококковому менингиту (воспалению мозговых оболочек).Симптомы. Заболевание

Менингококковая инфекция
Основным способом лечения остается интенсивная пенициллинотерапия. Эффективны также полусинтетические пенициллины (ампициллин, оксациллин).Проводят дезинтоксикацию организма, лечение кислородом, витаминами. При появлении симптомов отека и

Менингококковая инфекция
Эпидемиология. Возбудитель – менингококк. Его особенностью является малая устойчивость во внешней среде (вне организма человека сохраняется в течение 30 минут) и способность вырабатывать сильный эндотоксин. Механизм передачи –

Гемофильная инфекция
Эпидемиология. Возбудитель – Haemophilus influenzae (палочка инфлюэнцы, палочка Пфайфера), относится к семейству Pasteurellacae, роду гемофилюсов (который включает 16 видов бактерий). Представляет собой мелкую грамотрицательную коккобациллу. Наибольшее значение

Пневмококковая инфекция
Эпидемиология. Пневмококк (Streptococcus pneumoniae) представляет собой грамположительный инкапсулированный кокк (выделено 84 серотипа).Источником инфекции является только человек. От 5 до 70 % людей являются носителями одного или нескольких типов

Вирусная инфекция
По–разному складываются судьбы клеток, в которые проник вирус.Некоторые вирусы, размножившись в клетке и полностью использовав ее ресурсы, разрушают клетку и вызывают ее гибель. В других случаях клетка, почувствовав, что в нее проник вирус, кончает

ИНФЕКЦИЯ
Физическая блокировкаИнфекция — это внедрение в организм и размножение в нем болезнетворных микробов, сопровождающееся реактивными процессами. Любая инфекция опасна в первую очередь для людей с ослабленным иммунитетом.Эмоциональная блокировкаИнфекция

Инфекция наружного уха
Инфекция может развиваться в наружном и среднем ухе.Инфекция наружного уха (которую иногда называют «ухом пловца») представляет собой воспаление наружного ушного канала, т. е. той части уха, которая идет от барабанной перепонки к наружному

Раневая инфекция
Рана — открытое повреждение целости покровов тела (кожа, слизистые оболочки) с возможным нарушением глубоко лежащих тканей. В зависимости от того, чем нанесена травма, различают раны резаные, колотые, рубленые, рваные, ушибленные.Колотые раны могут быть

3.2. ВИЧ-инфекция
ВИЧ-ИНФЕКЦИЯ – современная чума, которая распространяется более хитро, чем все предыдущие: через иглы и задницы.Эта статья о вирусной инфекции, о её последней стадии см. статью «СПИД».Относится к медленным инфекциям, потому что убивает за примерно лет

Источник

Оглавление темы “Генетика вирусов. Вирусные инфекции. Вирусы бактерий. Бактериофаги.”:

1. Комплементация вирусов. Фенотипическое смешивание вирусов. Маскирование вирусов.

2. Интерферирующие взаимодействия вирусов. Интерференция вирусов. Гетерологическая интерференция вирусов. Гомологическая интерференция вирусов.

3. Факторы специфичности вирусов. Вирулентность вирусов. Особенности макроорганизма при инфицировании.

4. Вирусные инфекции. Особенности патогенеза вирусных инфекций. Основные этапы патогенеза вирусных инфекций.

5. Типы вирусных инфекций. Продуктивная вирусная инфекция. Абортивная вирусная инфекция. Персистирующая инфекция. Латентная (скрытая) вирусная инфекция. Инаппарантные инфекции.

6. Заражение клеток вирусом. Зараженные вирусом клетки. Основные реакции зараженных вирусом клеток.

7. Вирусы бактерий. Бактериофаги. Классификация бактериофагов. Морфология бактериофагов. Типы бактериофагов.

8. Головка Т-фагов ( бактериофагов ). Хвост Т-фагов ( бактериофагов ).

9. Размножение бактериофагов. Адсорбция бактериофага. Инъекция фага. Репродукция бактериофага. Выход дочерних популяций бактериофага. Негативные колонии бактериофага.

10. Лизогения. Лизогенные культуры. Провирусы. Профаги. Лизогенная ( фаговая ) конверсия.

Размножение бактериофагов. Адсорбция бактериофага. Инъекция фага. Репродукция бактериофага. Выход дочерних популяций бактериофага. Негативные колонии бактериофага.

Взаимодействие бактериофагов с клеткой специфично, так как они, как правило, инфицируют бактерии только определённого вида (рис. 5-11). Подобно вирусам животных, репродуктивный цикл литических бактериофагов включает адсорбцию свободного фага на клетке, инъекцию ДНК, репродукцию фага, выход дочерних популяций.

Адсорбция бактериофага

Прикрепление фага к бактерии происходит при помощи поверхностных структур бактериальной стенки, служащих рецепторами для вирусов. Например, рецепторы для фагов ТЗ, Т4 и расположены в липополисахаридном слое, для Т2 и Т6 — в наружной мембране. На бактериях клеточной оболочки (протопласты, L-формы) бактериофаги не адсорбируются. Некоторые фаги в качестве рецепторов используют F-пили. Помимо рецепторов, адсорбция фага зависит от рН среды, температуры, наличия катионов и некоторых соединений (например, триптофана для Т2-фага). При избытке фага на одной клетке может адсорбироваться до 200-300 вирусных частиц.

Размножение бактериофагов. Адсорбция бактериофага. Инъекция фага. Репродукция бактериофага. Выход дочерних популяций бактериофага
Рис. 5-11. Литическое взаимодействие фага с бактериальной клеткой. Бактериофаг вводит в вирусную ДНК (вДНК) в цитоплазму бактериальной клетки. Клеточные РНК-полимеразы транскрибируют ДНК в мРНК, транслирующуюся на рибосомах. В результате осуществляется синтез вирусной полимеразы и других ранних вирусных белков. Вирусная полимераза участвует в образовании вДНК дочерних популяций. Часть образовавшейся вДНК используется как матрица для синтеза белков головок и хвостов. После присоединения вДНК последние образуют дочернюю популяцию фагов.

Инъекция бактериофага

После адсорбции происходит ферментативное расщепление клеточной стенки лизоцимом, находящимся в дистальной части отростка. Базальная пластина хвоста лизирует прилегающий фрагмент клеточной стенки, выделяя присутствующий в отростке лизоцим. Одновременно в чехле высвобождаются ионы Са2+, активизирующие АТФазу, что вызывает сокращение чехла и вталкивание стержня хвоста через ЦПМ в клетку. Затем вирусная ДНК впрыскивается в цитоплазму (внедрение вирусной ДНК). Поскольку диаметр канала лишь немного превышает диаметр молекулы ДНК (около 20 нм), то ДНК способна попадать в цитоплазму только в форме нити.

Репродукция бактериофага

Проникнув в клетку, ДНК фага «исчезает»; уже через несколько минут обнаружить вирус не удаётся. В этот, так называемый скрытый период (эклипс) вирус берёт на себя генетическое управление клеткой, осуществляя полный цикл репродукции фага. К его окончанию составляющие фага соединяются в зрелый вирион.

Синтез фаговых белков. В первую очередь синтезируются ферменты, необходимые для образования копий фаговой ДНК. К ним относятся ДНК-полимераза, киназы (для образования нуклеозидтрифосфатов) и тимидилат синтетаза. Они появляются в клетке через 5-7 мин после её заражения. Клеточная РНК-полимераза транскрибирует вирусную ДНК в мРНК, которая транслируется бактериальными рибосомами в «ранние» белки фага, включая вирусную РНК-полимеразу и белки, способные посредством различных механизмов ограничивать экспрессию бактериальных генов. Вирусная РНК-полимераза осуществляет транскрипцию «поздних» белков (например, белков оболочки и эндолизина), необходимых для сборки фаговых частиц дочернего поколения. Некоторые вирусы расщепляют ДНК клетки-хозяина до нуклеотидов, чтобы использовать их для синтеза собственных нуклеиновых кислот.

Размножение бактериофагов. Адсорбция бактериофага. Инъекция фага. Репродукция бактериофага. Выход дочерних популяций бактериофага

Репликация нуклеиновых кислот реализуется за счёт активности вновь синтезированных вирусных ДНК-полимераз, производящих множественные копии вирусных нуклеиновых кислот.

Выход дочерних популяций бактериофага

Вновь синтезированные белки формируют в цитоплазме пул предшественников, входящих в состав головок и хвостов дочерних вирусных частиц. Другой пул содержит ДНК потомства. Специальные аффинные области в вирусной ДНК индуцируют объединение предшественников головок вокруг агрегатов нуклеиновой кислоты и образование ДНК-содержащих головок. Заполненная головка затем взаимодействует с хвостовой частью, образуя функциональный фаг. Весь процесс (от адсорбции до появления вновь синтезированных вирусов) занимает около 40 мин. После образования потомства («урожай», или выход фага, составляет 10-200 из одной инфицирующей частицы) клетка хозяина лизируется, высвобождая дочернюю популяцию. В разрушении клеточной стенки участвуют различные факторы: фаговый лизоцим, увеличенное внутриклеточное давление. Вирус, по-видимому, также стимулирует образование аутолизинов либо блокирует механизмы, регулирующие их синтез (подобные литические факторы выявлены в фаголизатах многих бактерий).

Негативные колонии бактериофага

Размножение фагов в бактериальных культурах, засеянных сплошным «газоном» на твёрдых средах, сопровождается лизисом бактерий и образованием зон просветления — «стерильных пятен». Для их обозначения предложен термин «негативные колонии бактериофага». У разных фагов они имеют строго определённые размеры и форму (например, звёздчатую у дизентерийных фагов). При заражении бульонных культур литическим фагом наблюдают просветление среды. Способность образовывать негативные колонии в культурах чувствительных бактерий в микробиологической диагностике возбудителей инфекционных болезней известна как фагодиагностика

– Также рекомендуем “Лизогения. Лизогенные культуры. Провирусы. Профаги. Лизогенная ( фаговая ) конверсия.”

Источник

Читайте также:  Кишечная палочка в ноге