Кишечная палочка имеет диплоидный набор хромосом

§ 6. Строение и число хромосом

Благодаря митозу во всех клетках одноклеточных и многоклеточных организмов поддерживается постоянный набор хромосом.

В норме все хромосомы клеток тела эукариот парны, имеют своего гомолога и составляют двойной, или диплоидный, набор (2n) (см. рис. 32). Только в зрелых половых клетках имеется лишь один, гаплоидный, набор (1n). Некоторые клетки (и целые организмы в клетках своего тела) содержат увеличенный более чем вдвое гаплоидный набор. Такие клетки или организмы называются полиплоидными (3n, 4n, 5n и т. д.) (см. рис. 32). Диплоидный набор хромосом в клетках тела человека – 46, в клетках других приматов равен в среднем 48. Он колеблется внутри класса млекопитающих от 6 у мелкого азиатского оленя мунтжака до 84 у носорога. У серого хомячка 2n равно 22, у кошки – 38, у овцы – 54, у коровы – 60, у различных непарнокопытных – от 32 до 66, у шимпанзе – 48.

Число хромосом в клетках тела аскариды составляет 4, гидры – 12, щуки – 18, тритона и лягушки – 24. В природе встречаются животные с большим числом хромосом; например, у речного рака их 116, а у одного из видов морских одноклеточных – радиолярий – достигает рекордной цифры – 1600. Разнообразно число хромосом и у растений: у некоторых сложноцветных их 4, у лука – 16, у кукурузы – 20, у различных пшениц – 14, 28, 42, у земляники садовой – 56 и т. д.

Рис. 10. Тонкое строение хромосом (схема). I – внешний вид: 1 – метацентрическая; 2 – субметацентрическая; 3 – акроцентрическая; 4 – хромосома со спутником; р – короткое плечо; q – длинное плечо хромосомы. II – внутреннее строение: а – центромера (первичная перетяжка); б – вторичная перетяжка; в – сателлит (спутник); г – хромонема

Хромосомы (рис. 10) состоят из двух половин, называемых хроматидами, каждая из которых содержит в своем составе тонкие нити – хромонемы (от греч. нема – нить). Они состоят из дезоксирибонуклеопротеида (ДНП) и включают около 40% ДНК и 60% белка. Хроматиды соединены маленькими тельцами в форме точек или зернышек, называемых хромоцентрами, или центромерами.

Совокупность хромосом, содержащих единицы наследственности – гены, называют геномом. Геном прокариот отличается от генома эукариот более низким содержанием ДНК и относительно более простой регуляцией активности генов (см. главу I, §4). У прокариот, например у кишечной палочки (Esherichia coli), геном представлен всего одной гаплоидной кольцевой нитью ДНК (генофорой), содержащей в тысячу раз меньше ДНК, чем в гаплоидном наборе клетки человека (рис. 11).

Рис. 11. Хромосомы человека (схема гаплоидного набора). 1-22 – аутосомы; X и Y – атллосомы. Латинскими буквами обозначены группы хромосом

Строение хромосом особенно хорошо можно рассмотреть при делении клетки, во время метафазы. В парных (гомологичных) хромосомах центромеры имеют определенные размеры и последовательность расположения. В зависимости от места нахождения центромеры и определяемой этим длины плеча хромосомы бывают нескольких типов.

Метацентрический тип – центромеры в центре хромосомы, оба плеча хромосомы равны (см. рис. 10, I, 1).

Субметацентрический тип – центромера ближе к одному из концов хромосомы, имеющий форму крючка, плечи хромосомы имеют разную длину: короткое р и длинное q (см. рис. 10, I, 2).

Акроцентрический тип – центромера занимает место на конце палочковидной хромосомы (см. рис. 10, I, 3).

Рис. 12. Дрозофила (Drosophila melanogaster) и ее кариотипы. ♂ – самец; ♀ – самка

Место расположения центромеры называется первичной перетяжкой хромосомы. Встречаются хромосомы и со вторичной перетяжкой. Если вторичная перетяжка достаточно глубока и длинна, то ее участок, отделенный вторичной перетяжкой, называется спутником, или сателлитом (см. рис. 10, I, 4). Так, из 8 хромосом (2n) дрозофилы (Drosophila melanogaster) две пары мета центрического типа, одна пара в виде маленьких шариков, половые Х – хромосомы субметацентрического, а Y – хромосомы акроцентрического типа (рис. 12). В табл. 3 показано нормальное распределение хромосом, а на рис. 13 – нормальные кариограммы человека.

Таблица 3. Нормальный набор хромосом человека

Однако под влиянием различных факторов число и форма хромосом могут изменяться. Например, под воздействием низких и высоких температур хромосомы укорачиваются или удлиняются; ионизирующее излучение вызывает распад хромосом на отдельные участки (фрагментация) и их выпадение из набора.

Изучением кариотипов, особенностей строения и числа хромосом занимается одно из направлений генетики – цитогенетика. Кариотипы рассматривают на стадии метафазы, когда хромосомы располагаются в одной плоскости (метафазная пластинка) (см. рис. 9). Однако изучение кариотипов – не простое дело: число хромосом в клетках человека относительно велико, в метафазной пластинке нередко одна хромосома ложится на другую. Современные методы цитогенетического анализа позволяют диагностировать ряд наследственных заболеваний, связанных с врожденным, лучевым или другими нарушениями структуры и числа хромосом. Для подсчета числа хромосом могут быть использованы различные клетки: кожи, костного мозга, но чаще крови – лейкоциты (лимфоциты).

Берут небольшое количество крови. Эту кровь можно хранить несколько дней (в течение недели) в холодильнике или транспортировать специальными лабораториями (“хросомы – почтой”).

Рис. 13. Нормальные кариограммы женщины (I) и мужчины (II)

Лейкоциты выделяют путем осаждения эритроцитов, их центрифугирования или с помощью 10% раствора желатины. В стерильных боксах лейкоциты помещают в культуру тканей, в специальную среду с большим числом (около 50) ингредиентов. Среди них необходим особый белок растительного происхождения – фитогемагглютинин, добываемый из фасоли, стимулирующий рост лимфоцитов. Затем в специальных флаконах культуру помещают в термостат при температуре 37°С на 3 дня. Некоторые клетки в культуре начинают делиться. За 60 мин до фиксации в клетку вводят слабый раствор алколоида колхицина (добываемого из цветкового растения безвременника осеннего – Colchicum autumnale L.) (рис. 14), разрушающего ахроматические фигуры митоза (тянущие нити веретена) и задерживающего таким образом деление. Из раствора колхицина культуру на несколько минут помещают в гипотонический раствор, где клетки и хромосомы набухают (в силу разности осмотического давления), затем фиксируют. Клетки переносят на предметное стекло и окрашивают ядерными красителями ацетоорсеином, по Романовскому – Гимзе или по Фельгену.

Рис. 14. Безвременник осенний (Colchicum autumnale L.)

Окрашенную культуру, закрытую покровным стеклом, осторожно раздавливают, фотографируют. Из увеличенной микрофотографии аккуратно вырезают все хромосомы, раскладывают согласно строению их и величине, приготовляют кариограмму (см. рис. 13).

Женский организм человека имеет кариотип

44 аутосомы + XY

44 аутосомы + XX

Какие органоиды участвуют в упаковке и выносе синтезированных в клетке веществ?

Диплоидный набор хромосом имеют

клетки эпидермиса листьев берёзы

клетки кишечника трески

женские гаметы цветковых растений

мужские гаметы кошки

нервные клетки обезьяны

По каким признакам строения можно отличить бактериальную клетку от растительной? Назовите не менее трёх признаков.

Хромосомный набор соматических клеток пшеницы равен 28. Определите хромосомный набор и число молекул ДНК в одной из клеток семязачатка перед началом мейоза, в анафазе мейоза I и анафазе мейоза II. Объясните, какие процессы происходят в эти периоды и как они влияют на изменение числа ДНК и хромосом.

К эукариотам относят клетки

Молекулы какого вещества являются посредниками в передаче информации о первичной структуре белка из ядра к рибосоме?

Читайте также:  Гемолитическая кишечная палочка чувствительность к антибиотикам

В результате какого процесса созревают половые клетки у животных?

Какие вещества выполняют в организме функции биокатализаторов?

Где синтезируется рРНК?

на поверхности ЭПС

в клеточном центре

Молекулы кислорода в процессе фотосинтеза образуются за счёт разложения молекул

Какие процессы происходят в профазе первого деления мейоза?

образование двух ядер

расхождение гомологичных хромосом

образование метафазной пластинки

сближение гомологичных хромосом

обмен участками гомологичных хромосом

Установите соответствие между особенностью деления клетки и способом деления, для которого она характерна.

образуются две диплоидные дочерние клетки

обеспечивает созревание гамет у животных

сохраняет постоянство числа хромосом в клетках

происходит перекомбинация генов в хромосомах

служит способом бесполого размножения простейших

Известно, что все виды РНК синтезируются на ДНК-матрице. Фрагмент цепи ДНК, на которой синтезируется участок центральной петли тРНК, имеет следующую последовательность нуклеотидов: ЦГААТЦААТЦГГААТ. Установите нуклеотидную последовательность участка тРНК, который синтезируется на данном фрагменте, и аминокислоту, которую будет переносить эта тРНК в процессе биосинтеза белка, если третий триплет соответствует антикодону тРНК. Ответ поясните. Для решения задания используйте таблицу генетического кода.

Кишечная палочка – это бактерия, которая может причинить вред вашему здоровью. Если вы узнаете о способах уничтожения и профилактики кишечной палочки, вы сможете снизить риск заражения и не допустить ее распространения.

Кишечная палочка: симптомы

Кишечная палочка — это палочковидная бактерия, которая обитает в кишечнике человека и имеет множество разновидностей. Большинство из них — это безвредные микроорганизмы, но есть и такие, которые влекут за собой серьезные проблемы со здоровьем. Кишечная палочка возникает из-за несоблюдения гигиены и чистоты, поэтому использование хлоросодержащих моющих средств, таких как Domestos, необходимо.

Кишечная палочка: причины

  • Зараженная еда: Зараженные бактерии можно обнаружить в мясе крупного рогатого скота, включая говядину и баранину, так как бактерии кишечной палочки могут находиться в кишечнике животных. Кроме того, может быть заражена и фермерская продукция: зелень, фрукты и овощи.
  • Зараженная вода: Подхватить кишечную палочку очень просто, выпив воды из зараженного источника.

Кишечная палочка передается?

Присутствие безвредных разновидностей кишечной палочки является нормой для микрофлоры кишечника человека. Такие бактерии полезны для здоровья, так как препятствуют появлению других болезнетворных бактерий в кишечнике. Однако при нарушении работы пищеварительного тракта безвредная норма кишечной палочки может увеличиться и тогда необходима консультация доктора.

К сожалению, кишечная палочка заразна и тем самым еще более опасна. Кишечная палочка передается от человека к человеку воздушно-капельным и половым путем. Помимо прямого контакта с зараженным человеком, инфекция может передаваться путем употребления некачественной еды или загрязненной воды.

Кишечная палочка: профилактика с помощью личной гигиены

Чтобы остановить распространение кишечной палочки, нужно обязательно мыть руки:

  • После обращения с животными
  • После любого контакта с зараженным человеком
  • Перед и после приготовления еды
  • После замены подгузников, грязной одежды или постельного белья
  • После использования туалета
  • После уборки

Кишечная палочка: профилактика дома

Теперь перейдем к домашней уборке – важной части профилактики кишечной палочки. Следуйте этим простым советам, чтобы защитить свой дом:

  • Тщательно убирайте ванную комнату и туалет – пользуйтесь хлорсодержащими чистящими средствами при уборке раковин, сантехники и всех твердых поверхностей. Особое внимание стоит уделить туалету, так как он – один из основных источников распространения кишечной палочки. Использование Domestos поможет убить все вредоносные бактерии в вашем туалете и ванной. Такое чистящее средство сэкономит ваше время, а также позаботится о вашем здоровье. Однако, перед использованием любого нового средства, не забудьте его протестировать и внимательно читайте инструкцию.
  • Вытирайте все ручки в доме, чтобы не допустить распространения бактерий.
  • Протирайте стиральную машину после стирки грязной одежды и постельного белья.

Когда дело касается дезинфекции вашего дома, хлорсодержащие чистящие средства становятся основным способом поддержания гигиены. Многочисленные исследования не раз показывали эффективность геля Domestos, содержащего хлор, в уничтожении вредных бактерий и в борьбе по предотвращению кишечных инфекций.

Не стоит забывать и про использование туалетных блоков, которые помогут поддержать гигиеническую чистоту и предотвратить распространение бактерий. Туалетные блоки Domestos идеально встраиваются под ободок унитаза, плотно прилегая в самом критичном, с точки зрения грязи и микробов, месте.

Максимальный эффект защиты вашего туалета может быть достигнут благодаря совместному использованию чистящего геля и туалетных блоков Domestos. Результат – чистый и опрятный туалет 24/7*!

*Защита от загрязнений (благоприятной среды для микробов) 24 часа в сутки, 7 дней в неделю при использовании согласно инструкции. По результатам инструментальных тестов Unilever, Италия, 2016

Источник

Основу генетического аппарата кишечной палочки составляет бактериальная хромосома, входящая в состав нуклеоида – ядерноподобной структуры. Нуклеоид по морфологии напоминает соцветие цветной капусты и занимает примерно 30% объема цитоплазмы. Бактериальная хромосома представляет собой кольцевую двуспиральную правозакрученную молекулу ДНК, которая свернута во вторичную спираль. Длина бактериальной хромосомы составляет примерно 4,7 млн. нуклеотидных пар (п.н.), или ~ 1,6 мм. Вторичная структура хромосомы поддерживается с помощью гистоноподобных (основных) белков и РНК. Точка прикрепления бактериальной хромосомы к мезосоме (складке плазмалеммы) является точкой начала репликации ДНК (эта точка носит название OriC). Бактериальная хромосома удваивается перед делением клетки, и сестринские копии распределяются по дочерним клеткам с помощью мезосомы. Репликация ДНК идет в две стороны от точки OriC и завершается в точке TerC. Молекулы ДНК, способные себя воспроизводить путем репликации, называются репликоны. ген вирусный полипротеин

Одна бактериальная хромосома содержит до 1000 известных генов. Обычно это гены “домашнего хозяйства”, то есть необходимые для поддержания жизнедеятельности клетки.

Все множество известных генов делится на 10 групп, контролирующих следующие процессы (в скобках указано количество изученных генов):

  • 1. Транспорт различных соединений и ионов в клетку (92 гена).
  • 2. Реакции, поставляющие энергию, включая катаболизм различных природных соединений (138 генов).
  • 3. Реакции синтеза аминокислот, нуклеотидов, витаминов, компонентов цепей переноса электронов, жирных кислот, фосфолипидов и некоторых других соединений (221 гена).
  • 4. Генерация АТФ при переносе электронов (15 генов).
  • 5. Катаболизм макромолекул (22 гена).
  • 6. Аппарат белкового синтеза (164 гена).
  • 7. Синтез нуклеиновых кислот, включая гены, контролирующие рекомбинацию и репарацию (49 генов).
  • 8. Синтез клеточной оболочки (42 гена).
  • 9. Хемотаксис и подвижность (39 генов).
  • 10. Прочие гены, в том числе с неизвестной функцией (110 генов).

В лаг-фазе в клетке имеется одна бактериальная хромосома, но в фазе экспоненциального роста ДНК реплицируется быстрее, чем происходит деление клетки; тогда число бактериальных хромосом на клетку увеличивается до 2…4…8. Такое состояние генетического аппарата называется полигаплоидностью.

При делении клетки сестринские копии бактериальной хромосомы распределяются по дочерним клеткам с помощью мезосомы.

Кроме бактериальной хромосомы в состав генетического аппарата прокариот входит множество мелких репликонов – плазмид – кольцевых молекул ДНК длиной в тысячи п.н. Плазмиды такого размера содержат несколько десятков генов. Обычно это “гены роскоши”, обеспечивающие устойчивость к антибиотикам, тяжелым металлам, кодирующие специфические токсины, а также гены конъюгации и обмена генетическим материалом с другими особями. Известны также мелкие плазмиды длиной 2…3 тпн, кодирующие не более 2 белков. У многих бактерий открыты мегаплазмиды длиной порядка миллиона пн, то есть немногим меньше бактериальной хромосомы. Плазмиды могут быть прикреплены к мезосомам, могут находиться в автономном состоянии и в интегрированном состоянии. В последнем случае плазмида включается в состав бактериальной хромосомы в определенных точках attB. Таким образом, одна и та же плазмида может включаться в состав хромосомы и может вырезаться из нее. Существуют плазмиды, представленные одной копией – они реплицируются синхронно с ДНК бактериальной хромосомы. Другие плазмиды могут быть представлены многими копиями, и их репликация происходит независимо от репликации бактериальной хромосомы. Репликация свободных плазмид часто протекает по принципу “катящегося кольца” – с одной кольцевой матрицы ДНК считывается “бесконечная” копия.

Читайте также:  Клетка кишечной палочки фото

Репликация плазмид может быть синхронизирована с репликацией бактериальной хромосомы, но может быть и независимой. Соответственно, распределение плазмид по дочерним клеткам может быть точным или статистическим.

Молекулярно-генетические системы управления

(на примере лактозного оперона кишечной палочки)

Все гены организма можно разделить на две большие группы: конститутивные и индуцибельные.

Конститутивные гены постоянно включены: они функционируют на всех стадиях онтогенеза и во всех тканях. К конститутивным относятся гены, кодирующие тРНК, рРНК, ДНК-полимеразы, РНК-полимеразы, белки-гистоны, белки рибосом и т.д. Иначе говоря, это “гены домашнего хозяйства”, или существенные гены без которых клетки не могут существовать.

Индуцибельные гены функционируют в разных тканях на определенных этапах онтогенеза, они могут включаться и выключаться, их активность может регулироваться по принципу “больше или меньше”. Это тканеспецифичные гены, или “гены роскоши”, которые часто являются несущественными. Включение индуцибельных генов называется индукцией, а выключение – репрессией. Регуляцию активности генов производят молекулярно-генетические системы управления.

Переключение генов лучше всего изучено у бактерий – одноклеточных организмов. Рассмотрим механизмы регуляции активности генов на примере лактозного оперона кишечной палочки.

Оперон – участок бактериальной хромосомы, включающий следующие участки ДНК: Рпромотор, Ооператор, Z, Y, Аструктурные гены, Ттерминатор. (В состав других оперонов может входить до 10 структурных генов.)

Промотор служит для присоединения РНК-полимеразы к молекуле ДНК с помощью комплекса CAP-цАМФ (CAP – специфический белок; в свободной форме является неактивным активатором; цАМФ – циклоаденозинмонофосфат – циклическая форма аденозинмонофосфорной кислоты).

Оператор способен присоединять белок-репрессор (который кодируется соответствующим геном). Если репрессор присоединен к оператору, то РНК-полимераза не может двигаться вдоль молекулы ДНК и синтезировать иРНК.

Структурные гены кодируют три фермента, необходимые для расщепления лактозы (молочного сахара) на глюкозу и галактозу. Молочный сахар лактоза – менее ценный продукт питания, чем глюкоза, поэтому в присутствии глюкозы сбраживание лактозы является невыгодным для бактерии процессом. Однако при отсутствии глюкозы бактерия вынуждена переходить на питание лактозой, для чего синтезирует соответствующие ферменты Z, Y, А.

Терминатор служит для отсоединения РНК-полимеразы после окончания синтеза иРНК, соответствующей ферментам Z, Y, А, необходимым для усвоения лактозы.

Для регуляции работы оперона необходимы еще два гена: ген, кодирующий белок-репрессор, и ген, кодирующий белок СYА. Белок СYА катализирует образование цАМФ из АТФ. Если в клетке имеется глюкоза, то белок СYА вступает с ней в реакцию и переходит в неактивную форму. Таким образом, глюкоза блокирует синтез цАМФ и делает невозможным присоединение РНК-полимеразы к промотору. Итак, глюкоза является репрессором.

Если же в клетке имеется лактоза, то она взаимодействует с белком-репрессором и превращает его в неактивную форму. Белок-репрессор, связанный с лактозой, не может присоединиться к оператору и не преграждает путь РНК-полимеразе. Итак, лактоза является индуктором.

Предположим, что первоначально в клетке имеется только глюкоза. Тогда белок-репрессор присоединен к оператору, а РНК-полимераза не может присоединиться к промотору. Оперон не работает, структурные гены выключены.

При появлении в клетке лактозы и при наличии глюкозы белок-репрессор отщепляется от оператора и открывает путь РНК-полимеразе. Однако РНК-полимераза не может присоединиться к промотору, поскольку глюкоза блокирует синтез цАМФ. Оперон по-прежнему не работает, структурные гены выключены.

Если же в клетке имеется только лактоза, то белок-репрессор связывается с лактозой, отщепляется и открывает путь РНК-полимеразе. В отсутствии глюкозы белок СYА катализирует синтез цАМФ, и РНК-полимераза присоединяется к промотору. Структурные гены включаются, РНК-полимераза синтезирует иРНК, с которой транслируются ферменты, обеспечивающие сбраживание лактозы.

Таким образом, лактозный оперон находится под двойным контролем индуктора (лактозы) и репрессора (глюкозы).

Геномы простейших

Число генов в геноме инфузории оказалось таким же, как у человека.

Инфузории – самые сложные из одноклеточных организмов, и вообще – верх того, что смогла создать эволюция на одноклеточном уровне. Строение инфузорий во многом напоминает многоклеточных, несмотря что клетка всего одна. Например, у многоклеточных животных различают линию генеративных клеток, геном которых оберегается от всяческих изменений (ведь именно этот геном будет передан по наследству потомкам), и соматические клетки, геном которых может меняться по мере надобности (например, могут метилироваться или вовсе выбрасываться какие-то части генома, не нужные в данной ткани или органе, или могут происходить сложные целенаправленные перестройки, как в лимфоцитах). Генетические изменения соматических клеток в норме не передаются по наследству. У инфузорий тоже есть два генома – генеративный и вегетативный (соматический). Первый хранится в маленьком ядре (микронуклеусе), содержит много транспозонов и некодирующих участков, и в целом находится в нерабочем состоянии. Например, многие гены в нем разорваны на куски и перемешаны в такой клубок, что никаким сплайсингом не распутать. Но, тем не менее, это нормальный, хотя и сильно запущенный, большой эукариотический геном. Кстати, число генов у инфузорий и у человека примерно одинаково (порядка 30 тысяч). Геном микронуклеуса, естественно, не работает (он и не смог бы), и служит только для передачи генов потомству при половом размножении.

Вегетативный (соматический, рабочий) геном инфузории хранится в большом ядре (макронуклеусе) и по многим параметрам сильно отличается от других эукариотических геномов. У инфузории Oxytricha, которой посвящена обсуждаемая статья, он состоит из многих тысяч отдельных “нанохромосом”. Это настоящие хромосомы, только очень маленькие, обычно содержащие всего один ген. Каждая нанохромосома, или МАК-хромосома, присутствует в макронуклеусе в очень большом количестве копий. Соответственно, и весь вегетативный геном многократно сдублирован, то есть макронуклеус является полиплоидным (микронуклеус – диплоидное ядро).

По размеру вегетативный геном окситрихи в целых 20 раз меньше генеративного (50 млн и 1 млрд пар оснований соответственно; для сравнения, у человека – 3 млрд, у бактерий – обычно до 10 млн). Такое радикальное сокращение достигается просто за счет выбрасывания из генеративного генома всего “лишнего”.

Инфузории размножаются делением, при этом делятся оба ядра. Время от времени инфузории конъюгируют, чтобы обменяться наследственным материалом (конъюгация – особая разновидность полового процесса). Во время конъюгации микронуклеус претерпевает мейоз, то есть такое деление, в ходе которого число хромосом сокращается вдвое. Соединившиеся инфузории обмениваются “половинками” своих микронуклеусов. Эти половинки затем сливаются, и каждая инфузория получает один целый микронуклеус, в котором половина хромосом – ее собственная, а половина получена от партнера. Затем инфузории разъединяются и продолжают жить как жили, с той небольшой разницей, что с точки зрения генетики каждая из них теперь превратилась в свою собственную дочь.

Читайте также:  Где нашли кишечную палочку

Во время конъюгации или сразу после нее макронуклеус вместе со своим геномом разрушается, а затем восстанавливается заново. За основу берется генеративный геном микронуклеуса, но он при этом подвергается радикальной перестройке. 95% генеративного генома просто удаляется. “На выброс” идут практически все транспозоны и некодирующие последовательности. Остаются чистые гены, почти без примесей. Но реорганизация генома не сводится к удалению мусора. Происходит также “распутывание” – сборка работающих генов из разрозненных и перепутанных обрывков. Как мы помним, многие гены в генеративном геноме разорваны на мелкие кусочки и перемешаны. В промежутках между этими кусочками могут находиться длинные некодирующие вставки. Это не обычные интроны, которые удаляются при сплайсинге (интроны у инфузорий тоже есть, но они входят в состав сохраняемых фрагментов). Это особые, характерные только для инфузорий “лишние” куски генома, удаляемые при формировании вегетативного генома макронуклеуса.

Например, в генеративном геноме ген может иметь такую структуру: 2X7X5X4X8X1X3X6 (цифрами обозначены “рабочие” фрагменты гена, буквой X – “ненужные” вставки различной длины). В вегетативном геноме этот ген будет выглядеть так: 12345678.

Откуда клетка знает, в каком порядке нужно соединять обрывки? До сих пор ответа на этот вопрос не было.

Исследователи из Принстонского университета установили, что для “распутывания” генетической информации инфузории используют образцы (матрицы), представляющие собой молекулы РНК, считанные с нанохромосом макронуклеуса (МАК-хромосом) перед тем, как макронуклеус был разрушен.

Кишечная палочка имеет диплоидный набор хромосом

РНК-матрица, считанная с МАК-хромосомы перед разрушением макронуклеуса, служит “ключом” для распутывания генетической информации, содержащейся в МИК-хромосоме. Черным цветом обозначены концевые участки хромосом – теломеры. Чтобы это выяснить, пришлось провести много сложных экспериментов.

Для проверки гипотезы о роли РНК-матриц в сборке МАК-хромосом исследователи воспользовались методом РНК-интерференции. Инфузорий кормили генно-модифицированными бактериями, производящими двухцепочечные молекулы РНК, совпадающие по последовательности нуклеотидов с фрагментом одной из МАК-хромосом. Эукариотические клетки относятся к двухцепочечным РНК с опаской, принимают их за вирусов и начинают уничтожать все РНК с такой последовательностью нуклеотидов, в том числе и обычные, одноцепочечные. На этом основана методика “выключения” генов. Идея состояла в том, что, поев бактерий, инфузория сама уничтожит одну из РНК-матриц, необходимых ей для сборки МАК-хромосом. Так и вышло. В результате после конъюгации получились инфузории, у которых соответствующий участок одной из МАК-хромосом оказался собран неправильно или вообще не собран – просто оставлен в том виде, в каком он был в МИК-хромосоме. При этом все остальные МАК-хромосомы были собраны правильно.

Стало быть, РНК-матрицы действительно участвуют в программируемой перестройке генома. Но что они собой представляют – являются ли они копиями целых нанохромосом или отдельных их участков?

Исследователи стали выделять и анализировать РНК из инфузорий на разных стадиях жизненного цикла. Выяснилось, что через несколько часов после конъюгации (как раз тогда, когда старый макронуклеус разрушается, а новый начинает формироваться) в клетках появляются длинные транскрипты (молекулы РНК), соответствующие целым МАК-хромосомам вместе с концевыми участками – теломерами. Через 30-50 часов после конъюгации эти транскрипты исчезают.

Таким образом, перед тем как уничтожить макронуклеус вместе с вегетативным геномом, клетка снимает “резервную копию” с каждой МАК-хромосомы. Эта копия, представляющая собой молекулу РНК, в дальнейшем используется как образец для сборки новых маленьких и аккуратных МАК-хромосом из того безобразия, которое записано в МИК-хромосомах.

Следующий вопрос состоял в том, насколько точно РНК-матрицы регулируют процесс сборки МАК-хромосом и можно ли управлять этим процессом, внедряя в клетку искусственные РНК-матрицы? Исследователи синтезировали несколько молекул РНК, похожих на “настоящие” РНК-матрицы, но с измененным порядком фрагментов. Например, если для МИК-гена со структурой 2X7X5X4X8X1X3X6 правильная РНК-матрица имеет вид 12345678, то в искусственной матрице какую-нибудь пару фрагментов меняли местами (например, так: 13245678).

Впрыскивание таких матриц в инфузорий после конъюгации приводило к формированию МАК-хромосом двух типов: одни воспроизводили правильный порядок фрагментов (ведь правильные матрицы из клеток не удалялись), другие – тот, который присутствовал в искусственных матрицах. Напомним, что каждая МАК-хромосома в макронуклеусе присутствует в огромном количестве копий. Таким образом, РНК-матрицы осуществляют весьма точное управление процессом сборки МАК-хромосом, и при помощи искусственных матриц можно направлять этот процесс в желаемую сторону.

Следующий важный вопрос: регулируют ли РНК-матрицы сборку только тех генов, которые в генеративном геноме перемешаны (то есть имеют неправильный порядок фрагментов) или же этот механизм универсален и применяется ко всем генам без исключения?

Исследователи изготовили и ввели в инфузорий РНК-матрицы с неправильным порядком фрагментов для тех генов, которые в генеративном геноме не перемешаны и потому в “распутывании” не нуждаются (из них нужно только вырезать “лишние” куски). В итоге соответствующие гены в МАК-хромосомах оказались неправильно собраны. Значит, механизм универсален.

Из этого, кстати, следует интересный эволюционный вывод. Поскольку у инфузорий уже развилась универсальная система “распутывания” измельченных и перепутанных генов, дальнейшая фрагментация МИК-генов и перестановки их частей уже не будут отсеиваться отбором. Ведь есть распутывающий механизм, ему всё равно, он всё исправит. Видимо, потому-то МИК-геномы инфузорий и пришли постепенно в состояние хаоса.

Предполагают, что система изначально могла развиться просто для удаления лишних кусков генома, а “распутывающая” функция ее возникла при этом автоматически, сама собой, как некий довесок – сначала ненужный, но потом ставший необходимым.

Таким образом, информация о последовательности, в которой нужно сшивать обрывки генов генеративного генома, передается потомству инфузорий “неклассическим” способом – в виде молекул РНК. А ведь это не такая уж маленькая часть наследственной информации!

Могут ли РНК-матрицы передавать потомству также и информацию о последовательности отдельных нуклеотидов? До сих пор речь у нас шла только о последовательности фрагментов генов, то есть о кусках длиной в десятки и сотни нуклеотидов. Каждый ген, как известно, может существовать в виде нескольких аллелей, различающихся единичными нуклеотидными заменами или вставками. Поэтому соответствие РНК-матрицы и собираемых на ее основе МАК-хромосом далеко не всегда является абсолютным. Отдельные нуклеотиды могут различаться, и это не мешает правильной сборке.

В принципе, не исключено, что какие-то нуклеотидные замены могут передаваться из РНК-матрицы в собираемую МАК-хромосому. Конечно, инфузориям нет смысла переносить в МАК-хромосому все различия такого рода. Ведь тогда МАК-хромосомы после конъюгации оставались бы полностью идентичными материнским, и конъюгация потеряла бы всякий смысл. Но, как выяснилось, некоторые нуклеотидные замены все-таки переносятся в МАК-хромосомы из РНК-матриц. Это, однако, происходит не по всей длине собираемого гена, а только в непосредственной близости от мест “сшивки” фрагментов. Это очень важный факт, однозначно свидетельствующий о том, что в сшивке кусочков ДНК у инфузорий принимает участие только что открытый (у дрожжей) механизм починки ДНК на основе РНК-матриц.

Могут ли подобные системы редактирования генома, основанные на использовании РНК-матриц, работать и у других организмов, а не только у инфузорий? Почему бы и нет? Нужно искать. Череда открытий последних лет однозначно показывает, что живая клетка по-прежнему таит в себе множество неизвестных нам молекулярных механизмов, в том числе и таких, которые используются для целенаправленного изменения собственного генома.

Источник