Кишечная палочка является симбионтом человека

Открытие российских ученых позволит затормозить распространение «супербактерий»

Биологи выяснили, как кишечная палочка и некоторые другие микробы производят мощнейшие антибиотики из класса микроцинов, убивающие сальмонеллу, возбудителей пневмонии и многих других опасных бактерий. Их выводы были представлены в журнале Molecular Cell.

Наше открытие позволит собирать не только антибиотики, но и другие белковые молекулы, способные бороться с раком и другими болезнями. Используя подобные молекулярные машины и короткие пептиды, можно собрать целый ворох новых лекарств

пояснил Константин Северинов, профессор “Сколтеха” и университета Ратгерс (США)

В последние годы перед медиками все шире и острее становится проблема появления так называемых “супербактерий” – микробов, стойких к действию одного или нескольких антибиотиков.

Среди них есть как редкие бактерии, так и очень распространенные и опасные патогены, такие как золотистый стафилококк или пневмококк. Возникла реальная опасность того, что все антибиотики потеряют свою эффективность и медицина вернется в “темные века”. Поэтому ученые сегодня начали искать антибиотики и похожие на них молекулы в самых неожиданных местах.

К примеру, в начале 2016 года китайские биологи рассказали о том, что им удалось найти новые антибиотики в желудке гусениц хлопчатниковой совки, чьи бактерии-симбионты помогают насекомому защищаться от инфекций, производя токсины, убивающие других бактерий. Аналогичные молекулы были найдены в крови опарышей, варанов и крокодилов.

Ученые, как отмечают Северинов и его коллеги, уже почти век знают, что похожие вещества, так называемые микроцины, производят многие бактерии, в том числе и обычная кишечная палочка. Они используют эти короткие белковые молекулы для “расчистки жизненного пространства” и уничтожения похожих на них микробов, не обладающих защитой от подобных токсинов.

Несмотря на массу интересных и полезных свойств, микроцины пока не проникли в медицину по одной простой причине – биологи не понимали того, как именно работает фермент McbBCD, собирающий их молекулы. Российские и зарубежные ученые нашли ответ на этот вопрос, получив точную трехмерную фотографию этого вещества при помощи ускорителя частиц.

Оказалось, что оно одновременно запускает и ускоряет сразу две цепочки реакций, необходимых для превращения коротких белковых заготовок микроцинов, не способных причинить вреда “врагам” бактерии, в “боевую” версию антибиотика.

Раскрытие механизмов работы McbBCD, по словам биологов, позволяет превратить его в своеобразный “конструктор” антибиотиков, произвольным образом меняя их структуру и создавая новые типы микроцинов и похожих на них молекул из пептидов разных типов.

Это, как надеются ученые, позволит человечеству затормозить распространение “супербактерий” и не проиграть гонку вооружений с ними. Вдобавок, эти опыты помогут создать более избирательные версии микроцинов, способные проникать в раковые клетки и замедлять их деление, что решит еще одну большую проблему современной медицины.

Понравилась статья? Ставьте лайк ???? и подписывайтесь ???? на наш канал!

—-

Читайте также:

Кошачья услуга

Рецепт на простое счастье

Социальная изоляция — «новое курение»?

—-

Канал ФОМ(Фонд Общественное Мнение) про политику, социологию, науку, культуру, этнографию, здоровье и многое другое. Если у вас есть интересные темы для публикаций или истории, которыми вы хотели бы поделиться, то напишите нам об этом: hello@fom.ru

Источник

Снимок химерных клеток кишечной палочки и дрожжей

Общепринятая на данный момент теория симбиогенеза предполагает, что митохондрии в эукариотических клетках произошли от симбиотических бактерий. Однако поиски предковой бактерии и реконструкция событий симбиогенеза еще далеки от завершения. Авторы новой статьи в журнале PNAS подошли к проблеме с другого конца: они смоделировали симбиогенез на примере хорошо изученной бактерии (Escherichia coli) и хорошо изученной эукариотической клетки (Saccharomyces cerevisiae). Теперь у нас есть отработанная методика получения химерных клеток, с помощью которой можно проверять, какие именно свойства предковой бактерии были необходимы для симбиогенеза.

Теория симбиогенеза была предложена в 1967 году. Согласно ей, археи и протеобактерии вступили в эндосимбиоз (первые тем или иным способом «поглотили» вторых), что привело к возникновению эукариот (см.: Теория симбиогенеза 50 лет спустя: параллельной эукариотизации, скорее всего, не было, «Элементы», 22.11.2017). За 50 лет удалось уточнить разные детали: судя по всему, эндосимбиоз с предками митохондрий произошел только один раз, а не в нескольких параллельных ветвях, и это стало конечным этапом в становлении эукариот (см.: Генеалогия белков свидетельствует о позднем приобретении митохондрий предками эукариот, «Элементы», 08.02.2016). Однако вопросов всё еще остается немало: например, что это была за предковая бактерия? Одна из распространенных точек зрения заключается в том, что изначально бактерии паразитировали на клетках архей, а потом паразитизм перешел в симбиоз. В таком случае, ближайшие родственники такой бактерии, известные нам, — это альфапротеобактерии риккетсии, внутриклеточные паразиты многих животных и человека (вызывают, например, эпидемический сыпной тиф и пятнистую лихорадку Скалистых гор).

Можно продолжать поиск родственников «с конца», то есть сравнивать геномы современных митохондрий с геномами различных бактерий и искать пересечения, а можно зайти «с начала» и попробовать воспроизвести эту предковую бактерию самим. Для этого нужно определить минимальный набор свойств, которыми она должна обладать для успешного внедрения внутрь археи. Заодно такой метод мог бы пролить свет на последовательность событий симбиогенеза. Но коль скоро мы не умеем создавать бактерии с нуля, можно модифицировать самую изученную бактерию на свете — кишечную палочку (Escherichia coli).

Читайте также:  Цистит из за кишечной палочки помогите

Общий принцип, которым руководствовались авторы эксперимента, можно сформулировать так: чтобы заставить две клетки вступить в симбиоз, нужно отобрать у них что-то жизненно важное, тогда их существование по отдельности станет невозможно (рис. 2).

Рис. 2. Дизайн эксперимента

Всю работу можно условно разделить на пять шагов.

Шаг 1 — лишить кишечную палочку самодостаточности. Чтобы эндосимбиоз оказался выгодным решением для бактерии, она должна стать ауксотрофом — быть неспособной производить какое-нибудь жизненно необходимое вещество. Для многих бактерий таким веществом является тиамин (витамин B1) — кофермент в реакциях углеводного обмена. Поэтому в геноме E. coli ген биосинтеза тиамина был заменен на кассету (см. Gene cassette) с GFP (зеленым флуоресцентным белком) и геном устойчивости к антибиотику канамицину. Теперь клетки не могут выживать без внешнего источника тиамина (который они сквозь мембрану закачивают внутрь), их можно отобрать под действием антибиотика и отследить во флуоресцентный микроскоп.

Шаг 2 — сделать кишечную палочку полезной. Авторы гипотезы происхождения митохондрии из внутриклеточных паразитов полагают, что одним из ключевых белков был АТФ/АДФ-антипортер (см. Antiporter). Это белок-переносчик, который обменивает АТФ на АДФ, меняя их местами по разные стороны мембраны. У паразитической бактерии он должен работать на благо бактерии: захватывать АТФ снаружи (то есть отбирать у клетки-хозяина) и менять на отработанные АДФ бактерии. Однако этот механизм можно заставить работать и в обратную сторону, если концентрации веществ поменяются местами. При этом бактерия начнет забирать АДФ из цитоплазмы хозяина и отдавать АТФ. Так или иначе, АДФ/АТФ-антипортеры есть как у современных митохондрий, так и у внутриклеточных паразитов. У свободно живущей кишечной палочки такого белка нет, поэтому пришлось снабдить клетки E. coli плазмидой с соответствующим геном.

Шаг 3 — лишить дрожжи самодостаточности. Чтобы заставить дрожжи вступить в симбиоз, их нужно лишить энергии, то есть АТФ. Тогда единственным выходом будет получить его от кишечной палочки. Но у дрожжей, как у почти всех эукариот, есть свои митохондрии. Поэтому авторы эксперимента взяли мутантный штамм дрожжей, лишенный одного из ключевых митохондриальных генов. Такие клетки содержат митохондрии, но не получают от них энергии. Они не могут расти в среде, где из питательных веществ есть только глицерин. Однако оказалось, что и в симбиоз с E. coli они тоже не вступают.

Шаг 4 — добавить «белки слияния». Эукариотическая клетка — это множество вложенных друг в друга мембранных пузырьков. Чтобы органеллы хаотично не сливались друг с другом, мембраны покрыты белками группы SNARЕ, которые могут стимулировать или блокировать слияние. Многие патогенные бактерии тоже несут SNARE-подобные белки. Клетка-хозяин воспринимает их как собственные органеллы и не переваривает (то есть с ними не сливаются лизосомы). Правда, мы пока не уверены в том, что к моменту эндосимбиоза эукариоты уже обладали системой этих белков. Но коль скоро мы работаем с дрожжами, приходится на нее ориентироваться. Авторы эксперимента ввели кишечной палочке гены трех разных SNARE-подобных белков, позаимствованных у хламидий. И только после этого они получили устойчивые колонии дрожжей с симбиотическими E. coli (рис. 3). Колонии росли на среде, богатой глицерином, лишенной тиамина и с добавлением антибиотика канамицина, — то есть удовлетворяли всем условиям эксперимента. В том же составе химерные клетки размножались в течение последующих трех дней культивирования, что соответствует примерно 40 делениям.

Рис. 3. Ультраструктура химерных клеток

Шаг 5 — убрать лишнее. В ходе эволюции митохондрия утратила большую часть ДНК (у млекопитающих, например, в ее геноме осталось лишь 37 генов). Это значит, что она становилась всё более зависимой от своей клетки-хозяина. Авторы обсуждаемой статьи попробовали воспроизвести и этот этап тоже. Для этого они удалили у клеток кишечной палочки ген биосинтеза НАД+ — еще одного важного кофермента. Клетки, лишенные НАД+, так же как и их предшественники, лишенные тиамина, успешно образовывали химеры с дрожжами. И даже двойные мутанты, неспособные производить ни один из этих коферментов, также вступали в эндосимбиоз (рис. 4).

Рис. 4. Колонии химерных клеток, образованные разными штаммами кишечной палочки

Перед нами — отработанная методика, с помощью которой можно моделировать ранние события эндосимбиоза. Клетки кишечной палочки, дефицитные по разным веществам, равно хорошо образуют химеры, которые воспроизводятся из поколения в поколение. Следующий шаг — поиск предельной редукции генома E. coli, возможной в данной ситуации. Авторы статьи отмечают, что удаление всего двух путей биосинтеза уже дало экономию в 7,7 тысяч пар нуклеотидов (для сравнения, весь митохондриальный геном человека составляет примерно 15 тысяч пар). Поэтому нам еще предстоит найти ту грань, на которой экономия размера генома столкнется с возможностью выживания клетки-симбионта.

Кроме того, как ехидно указывают авторы в конце текста, при таком раскладе не очень понятно, кто в этой истории настоящий паразит. Если бактерия, попавшая внутрь археи, лишь постепенно утрачивала свои метаболические пути, то возможно настоящим паразитом здесь стоит считать архею, которая потребляла энергию, производимую бактерией.

Читайте также:  Я вылечила кишечную палочку

Источник: A. P. Mehta, L. Supekova, J.-H. Chen, K. Pestonjamasp, P. Webster, Y. Ko, S. C. Henderson, G. McDermott, F. Supeke, P. G. Schultz. Engineering yeast endosymbionts as a step toward the evolution of mitochondria // PNAS. Published ahead of print October 29, 2018. DOI: 10.1073/pnas.1813143115.

Полина Лосева

Источник

Слово «симбионт» происходит от древнегреческого «совместная жизнь, сожительство» и обозначает различные живые организмы, поддерживающие существование друг друга. Процесс тесного и длительного сожительства разных видов живых организмов называют симбиозом. Такие взаимоотношения между симбионтами успешны в том случае, если они приносят пользу всем участникам процесса и повышают их шансы на выживание. Яркий пример – бактерии-симбионты, живущие в кишечнике человека, без которых процесс пищеварения, а, следовательно, и наша жизнь были бы невозможны.

В том случае, если симбиоз приносит пользу одному из «сожителей» и вредит другому, говорят о паразитизме. Например, блохи используют собаку как источник питания, поэтому они являются паразитами. Но собака вполне спокойно проживет и без блох, а вот блохи без собаки никак не обойдутся.

Симбиоз как залог выживания

В отличие от паразитов симбионты работают на общий успех. Это может быть сотрудничество:

  • двух животных (бегемот и птичка, которая чистит ему зубы);
  • растений и насекомых (цветы, опыляемые только одним видом насекомых);
  • микроорганизмов и растений (клубеньковые бактерии, участвующие в процессе получения пищи бобовыми);
  • человека и бактерий (микроорганизмы, которые обитают в нашем кишечнике, помогают выжить нам и радуются жизни сами);
  • даже отдельных клеток друг с другом (симбиоз доядерных клеток-прокариотов породил полноценную клетку-эукариота с четко оформленным ядром, что положило начало процессу эволюции на нашей планете).

А есть еще лишайники как результат симбиоза гриба и водоросли, которые выживают там, где по отдельности ни грибы, ни водоросли жить не смогут. Есть сосуществование краба и актинии, когда первый является средством передвижения, а вторая – оборонительным оружием. И таких примеров не счесть.

Рассмотрим два примера симбиоза микроорганизмов с человеком и растениями – бактерии-симбионты человека и клубеньковые бактерии, участвующие в процессе питания бобовых.

Макроорганизм + микроорганизм = человек

Мы привыкли считать, что бактерии – это плохо. Однако, как и люди, бактерии бывают всякие. Если избавить человека от всех микробов и бактерий, живущих в нем и на нем, то долго этот несчастный не протянет.

Связь человека с окружающим миром сложилась в процессе эволюции и представляет собой стройную систему взаимоотношений симбионтов. Без существования бактерий, вирусов, сапрофитов (утилизация отходов) и даже паразитов невозможно существование единой системы под названием «человек».

Бактерии-симбионты живут в нашем кишечнике, на слизистых, на коже и составляют так называемую нормальную микрофлору. Наши родные микроорганизмы:

  1. Дают защиту всему организму, убивая или лишая пищи «пришлые» бактерии. Они не дают возможности расселиться на коже или слизистых опасным микробам или вирусам, пришедшим извне, тем самым создавая иммунную систему организма.
  2. Участвуют в пищеварении. Бактерии, живущие в кишечнике человека, вырабатывают пищеварительные ферменты, без которых невозможно усвоение некоторых видов пищи.

В формировании нормальной микрофлоры человека принимают участие около 500 видов различных бактерий. Так, наличие в организме человека кишечной палочки (в определенных количествах) – непременное условие для переваривания лактозы. В свою очередь лактобактерии перерабатывают полученную лактозу и другие углеводы в молочную кислоту, участвуя в процессе получения энергии.

Где и чем живут наши маленькие друзья?

Бактерии есть практически по всей длине желудочно-кишечного тракта, начиная от ротовой полости до прямой кишки. Но самые важные обитают именно в кишечнике. Здесь они вырабатывают ферменты и витамины, без которых процесс пищеварения попросту невозможен.

На каждом участке кишечника живут именно те микроорганизмы, которые приспособлены к определенным условиям обитания и содержанию питательных веществ. Например, в слепой кишке самой многочисленной группой являются бактерии, расщепляющие целлюлозу, что делает возможным переработку клетчатки.

Бактериям тонкого кишечника приходится выживать в довольно жестких условиях. Именно здесь находятся агрессивные вещества, смертельные для многих микроорганизмов. Например, соляная кислота, необходимая для пищеварения, убивает значительное количество микробов. Только несколько видов бактерий и дрожжей способны выжить в такой среде.

Кроме того, именно в тонком кишечнике процесс поглощения питательных веществ идет полным ходом. Это значит, что бактериям приходится сражаться за пищу с самим организмом. А еще сюда попадают не до конца обработанные вещества, не всегда пригодные для питания бактерий.

Тонкий кишечник связан с кровеносной и лимфатической системами, переносящими полученные питательные вещества. А нервная система по сигналу тонкого кишечника регулирует состав и количество гормонов, необходимых организму. То есть тонкий кишечник, благодаря своим симбионтам, является энергетической станцией и поставщиком питательных веществ.

Читайте также:  Антибиотик против кишечной палочки в мочевом пузыре

В толстом кишечнике бактериям живется значительно привольней, поэтому их количество и видовое разнообразие гораздо больше. В толстый кишечник организм отправляет непереваренные остатки пищи и другие отходы (осколки до размеров молекул) для дальнейшего вывода наружу.

Враги наших друзей

Антибиотики – относительно недавнее изобретение человечества. Сложно подсчитать, сколько жизней было спасено благодаря этому открытию. Однако, как известно, за все нужно платить. Антибиотики уничтожают все бактерии, не делая различий на хороших и плохих.

Именно поэтому после приема антибиотиков микрофлора кишечника выглядит весьма печально. Это моментально сказывается не только на нашем пищеварении, но и сильно снижает иммунитет. То есть, получается, опасность подцепить следующее заболевание становится больше после приема лекарств, предназначенных защитить наше здоровье.

Ученые пытаются разрушить этот замкнутый круг, разрабатывая все новые, узконаправленные, препараты. Но долгие годы широкого использования антибиотиков привели к тому, что микрофлора человека становится все более слабой. А отсутствие или недостаточное количество бактерий-симбионтов влечет за собой целый букет хронических заболеваний: диабет, рак, ожирение и т.д.

Симбионты в растительном царстве

Растения в своем стремлении выжить тоже не стесняются использовать симбионты. Например, хорошо известный лишайник, по сути, не является отдельным растением. Это симбиотическая система зеленых водорослей и грибов.

Как известно, водоросли не могут выжить без воды, а грибы не способны самостоятельно синтезировать питательные вещества (они используют то, что произвели другие микроорганизмы). Но эти недостатки взаимно уничтожаются в симбиотической группе. Водоросли с помощью фотосинтеза создают питательные вещества для грибов, а взамен получают комфортную среду обитания: необходимую влажность, кислотность почвы, защиту от ультрафиолета. В результате лишайники умудряются не просто выживать, но весьма уверенно чувствовать себя в довольно суровых условиях, где у них нет конкурентов за место под солнцем.

Еще одним примером симбиоза служат орхидеи, в корневой системе которых живут грибы и микроорганизмы. В этом тройственном союзе бактерии отвечают за тесную взаимосвязь растения-хозяина и гриба-симбионта. Самое поразительное, что не только грибы и микроорганизмы не могут существовать без растения, но и орхидея погибает, если уничтожить ее симбионтов.

Но самым, пожалуй, ярким примером растительной симбиотической системы являются клубеньковые бактерии в союзе с растениями семейства бобовых.

Как вырастить хороший урожай бобовых

В воздухе, которым мы дышим, есть азот (аж 78% от общего объема). Этот химический элемент в обязательном порядке входит в состав белков и нуклеиновых кислот, а значит, жизненно необходим все живым организмам на Земле.

Человек и животные получают азот вместе с пищей, в основном из белков животного и растительного происхождения. Но откуда же берут азот растения?

Получать азот напрямую из атмосферного воздуха самостоятельно растения не умеют. В почве тоже есть азот, но, во-первых, его очень мало, во-вторых, значительная его часть содержится в органических соединениях, усваивать которые растения не в состоянии.

И вот здесь вступают в игру азотфиксирующие бактерии. Они умеют превращать органические соединения, содержащие азот, в минеральные (нитраты), доступные для питания растений.

Отдельное место в ряду азотфиксирующих бактерий занимают так называемые клубеньковые. Эти микроорганизмы-симбионты образуют клубеньки на корнях бобовых растений (клевера, люпина, гороха, вики). Клубеньковые бактерии связывают свободный атмосферный азот и доставляют его прямо к столу своего растительного хозяина.

Таким образом, с помощью клубеньков-симбионтов растения получают возможность получать азот, а микроорганизмы, в свою очередь, берут от растений питательные вещества (продукты углеводного обмена и минеральные соли) для собственного роста и развития.

Для успешного развития системы симбионтов (растение + микроорганизм) необходимы определенные условия:

  • температура;
  • влажность;
  • реакция почвы;
  • штамм бактерий.

В природных условиях встречаются клубеньковые бактерии различных видов, и не все они достаточно эффективны. Поэтому в сельском хозяйстве используют выведенные штаммы микроорганизмов, инфицируя ими бобовые растения, что приводит к увеличению урожая.

Однако в случае с бобовыми симбиоз – вынужденная необходимость. Если в почве будет достаточно азота (например, азотные удобрения), то клубеньковые бактерии потеряют для хозяина свою значимость, и их колонии будут разрушены самим растением.

Итак, симбиоз – вещь важная, нужная и иногда жизненно необходимая. Симбионтные системы есть у высших животных, растений, грибов, бактерий, водорослей… Словом, практически везде. И мы не смогли бы не то что выжить, но даже появиться на свет, не создай природа такого мощного орудия для выживания, как система симбионтов.

Источник