Повреждение межмышечного кишечного сплетения

Энтеральная нервная система. Межмышечное и подслизистое сплетение

Желудочно-кишечный тракт имеет собственную нервную систему, которую называют энтеральной нервной системой. Она располагается в стенке кишечника, начинаясь в пищеводе, и простирается до ануса. Количество нейронов в энтеральной нервной системе составляет приблизительно 100 млн, что почти соответствует количеству нейронов спинного мозга. Высокоразвитая энтеральная нервная система особенно важна в регуляции гастроинтестинальной двигательной и секреторной активности.

Энтеральная нервная система состоит в основном из двух сплетений: (1) наружное сплетение, которое располагается между продольной и кольцевой мышечными слоями; его называют межмышечным сплетением, или сплетением Ауэрбаха; (2) внутреннее сплетение, которое располагается в подслизистом слое; его называют подслизистым сплетением, или сплетением Мейсснера.

Сплетение Ауэрбаха контролирует в основном двигательную активность, а сплетение Мейсснера отвечает за секрецию в желудочно-кишечном тракте и местный кровоток.

На рисунке особо отмечены внешние симпатические и парасимпатические волокна, которые соединяются как с межмышечным, так и с подслизистым сплетениями. Несмотря на то, что энтеральная нервная система может функционировать самостоятельно, независимо от этих внешних нервных влияний, стимуляция симпатической и парасимпатической систем может значительно усиливать или ослаблять кишечные функции, что будет изложено далее. На рисунке показаны окончания чувствительных нейронов, которые берут начало в эпителии или стенке кишечника желудочно-кишечного тракта и посылают афферентные волокна к обоим сплетениям энтеральной нервной системы и к (1) превертебральным ганглиям симпатической нервной системы, (2) спинному мозгу, (3) к стволу мозга в составе блуждающего нерва. Эти чувствительные нервы вызывают как местные рефлексы внутри кишечной стенки, так и другие рефлексы, реализуемые через превертебральные ганглии или базальные области мозга.

Регуляция перистальтических рефлексов
Схематичное изображение кишечных нейронов, формирующих перистальтические рефлексы:

(1) внутренние первичные афферентные сенсорные нейроны (IPAN) с клеточным телом в межмышечном сплетении;

(2) восходящий холинергический интернейрон;

(3) нисходящий интернейрон локального пути рефлекса;

(4) нисходящий интернейрон мигрирующего моторного комплексного пути;

(5) тормозящий мышцу мотонейрон;

(6) возбуждающий мышцу мотонейрон;

(7) IPAN с клеточным телом в подслизистом сплетении;

(8) энтероэндокринная клетка, высвобождающая стимулятор окончаний IPAN слизистой

Межмышечное и подслизистое сплетение

Межмышечное сплетение состоит преимущественно из линейных цепей соединенных между собой нейронов, которые тянутся по всему желудочно-кишечному тракту.

Межмышечное сплетение располагается между продольными и круговыми слоями гладкомышечных клеток на всем протяжении стенки кишечника и обеспечивает контроль мышечной активности по всей длине кишечника. Основными эффектами стимуляции этого сплетения являются: (1) повышение тонических сокращений, или «тонуса» кишечной стенки; (2) повышение интенсивности ритмических сокращений; (3) небольшое повышение частоты ритма сокращений; (4) повышение скорости распространения волн возбуждения вдоль стенки кишечника, которые вызывают более быстрые движения перистальтических волн кишечника.

Межмышечное сплетение не должно рассматриваться как целиком возбуждающее, т.к. некоторые из его нейронов являются тормозящими, поскольку их волокна секретируют тормозной медиатор, возможно, вазоактивный интестинальный пептид или какой-то другой тормозной пептид. Возникшие ингибирующие сигналы особенно важны для торможения активности некоторых кишечных сфинктеров, задерживающих продвижение пищи по гастроинтестинальному тракту. Примером может служить пилорический сфинктер, контролирующий опорожнение желудка в двенадцатиперстную кишку, и сфинктер илеоцекального клапана, который регулирует опорожнение тонкой кишки в слепую кишку.

Подслизистое сплетение в отличие от межмышечного сплетения осуществляет главным образом контроль за деятельностью определенного короткого сегмента кишки в пределах внутренней стенки. Так, например, многие афферентные сигналы берут начало в гастроинтестинальном эпителии и затем объединяются в подслизистом сплетении, чтобы скоординировать локальную кишечную секрецию, местное всасывание и локальное сокращение мышечных клеток подслизистого слоя, которые вызывают различную степень образования складок в слизистой оболочке желудочно-кишечного тракта.

Энтеральная нервная система

– Также рекомендуем “Медиаторы энтеральных нейронов. Парасимпатическая и симпатическая иннервация кишечника”

Оглавление темы “Регуляция двигательной активности и кровоснабжения кишечника”:

1. Потенциал покоя мышц желудочно-кишечного тракта. Тоническое сокращение мышц кишечника

2. Энтеральная нервная система. Межмышечное и подслизистое сплетение

3. Медиаторы энтеральных нейронов. Парасимпатическая и симпатическая иннервация кишечника

4. Чувствительные нервные волокна кишечника. Желудочно-кишечные рефлексы

5. Гормональный контроль желудочно-кишечного тракта. Гормоны действующие на кишечник

6. Поступательные движения ( перистальтика ) кишечника. Регуляция перистальтики кишечника

7. Перемешивающие движения кишечника. Чревное кровообращение

8. Регуляция кровоснабжения кишечника. Кровоток в ворсинках кишечника

9. Нервная регуляция кровоснабжения кишечника. Жевание и пережевывание пищи

10. Физиология глотания и проглатывания пищи. Регуляция акта глотания

Источник

По количеству нервных клеток кишечник сопоставим со спинным мозгом. Речь пойдет об энтеральной неврной системе.

Наша пищеварительная система имеет собственную, местную нервную систему, причем достаточно автономную. Мы же не задумываемся каждую секунду, о том, сколько нам нужно для пищеварения желудочного сока, через какое время пища из него должна пойти дальше, как и на каком участке кишечник должен расслабиться а в каком сократиться. Мы вообще об этом не думаем. Все происходит автоматически.

Обеспечивается такая слаженная работа всех органов пищеварения сложной структурой — энтеральной нервной системой, которую по нескольким причинам описывают как наш второй мозг. Такое громкое название не случайно. Ну, во-первых, система действительно автономна и в эксперименте работает даже после изоляции от центральной нервной системы (хотя «независимость» в разных отделах отличается). А во-вторых, по количеству нейронов может сравниться спинным мозгом. Ученые дают ориентировочную цифру: 200 — 600 миллионов нейронов.

Как открывали энтеральную нервную систему

Здесь анатомам прошлого не так повезло. И если головной и спинной мозг с отходящими от него нервными пучками исследователям прошлого было сложно не заметить (замечательные рисунки были еще у Везалия), то нервную систему кишечника без микроскопа обнаружить не было возможности: она была практически «встроена» в стенку кишки.

С появлением микроскопии ученые старались рассмотреть под большим увеличением практически все: микромир все больше открывался любознательным. Первым, кто описал микроскопические ганглии в стенке глотки и желудка был Ремак (Remak) в 1840 году. Но в своих наблюдениях он не принял их за нервное сплетение. Более полные исследования принадлежат следующим ученым: Мейсснеру , Бильроту и Ауэрбаху. Подробные описания и зарисовки этих ученых, основанных на довольно примитивных методах окраски нервной ткани были без изменений практически до 1930 года

Те самые, которые не восстанавливаются

Действительно, нервные клетки — нейроны, утратили (за редким исключением) способность к делению. Природа забрала эту способность у них, наделив другими уникальным свойством: нейроны способны быстро принимать, передавать и обрабатывать информацию.

Все знают, что такое эстафета: бегун передает палочку следующему спортсмену, полному сил. В древности предупреждали о приближении вражеского войска при помощи сигнала от одного поста к другому, разжигая костер. Увидев дым от него, видевшие его воины разжигали свой и предупреждали следующий пост. Так информация об опасности быстро достигала командования.

Быструю передачу информации между нашими одноклеточными гражданами в нашем многоклеточном государстве обеспечивает нервная система. Нет, конечно передать сигнал можно по «дорогам» — кровеносной системе. «Письмом» будет какое-нибудь химическое вещество, например, гормон. Но это дольше, к тому же такое письмо будет в «масс- рассылке». Это тоже необходимо и лежит в основе эндокринной системы и на заре эволюции только так и было. Но природа пошла дальше и создала телеграф — нейронную сеть.

Нейроны не походят ни на какие другие клетки организма. Типичная нервная клетка имеет несколько отходящих от ее тела отростков, которыми она может соприкасаться с другими нейронами, воспринимать информацию из внешней среды через рецепторы, или давать команды другим клеткам (например, мышечным или секреторным).
нейроны кишечника
Обычно нейрон имеет несколько небольших отростков. Их называют дендритами. По ним сигнал достигает нервной клетки извне. Ими нервная клетка «слышит». А вот «говорит» нейрон с помощью другого отростка. Чаще всего такой отросток один, его называют аксоном. Он может достигать огромной длины — до одного метра. Если увеличить тело нейрона до 3 сантиметров, то аксон будет километровой длины! Так что «маякнуть» можно не только соседям, а чтобы электрический сигнал не затухал и перемещался с большей скоростью, он покрыт «изоляцией» — миелиновой оболочкой.

Есть ряд заболеваний, например рассеянный склероз, клиника которого связана с поражением этих оболочек. Это проблема неврологии. А практическому хирургу знакома визуальная разница двигательных и чувствительных нервов. Первые заметно толще именно за счет такой изоляции.

Нервная клетка занята только тем, что передает и принимает электрические сигналы (функцию поддержки выполняют клетки-помощники — нейроглия). Причем роль «принял-передал» только поверхностная. Меняется интенсивность передачи, формируются дополнительные связи или разрушаются старые. Все это лежит в основе адаптации и обучения. Количество нейронных взаимодействий в организме подсчету не поддается и имеет цифры астрономические.

Итак, кишечник имеет свою собственную нервную систему, которая, подобно кружевному чулку, оплетает пищеварительную трубку практически от глотки до внутреннего сфинктера.

Нервная система, которая встроена в кишечную стенку, находится у всех представителей царства животных, даже у такого более примитивного существа как гидра (Shimizu, 2004 год).

кишечник нервная система гидра

Ее изучают на уроках зоологии в школе. Поразительная способность к регенерации: она может восстановиться из одной сотой части тела (из каждого кусочка будет новая гидра). У нее тоже имеются простейшая энтеральная нервная система

Сейчас ученые считают, что примитивный мозг червей, а конечном итоге мозг высших животных и нас с вами, произошли от нервной системы внутри кишечной трубки. Так что энтеральная нервная система — древний прародитель более развитой, современной центральной нервной системы.

Александр Станиславович Догель

Являясь одним из основоположников нейрогистологии, среди множества работ профессора Догеля были и работы по изучению нервной системы кишечника. Он описал различные виды нервных клеток в кишечной стенке, выделил три разных их типа:
кишечник нейроны Догеля Эти клетки непосредственно отдают команды исполняемым клеткам (секреторным или мышечным)
догель энеральная нервная система
Нейроны Догеля 2 типа — это клетки, воспринимающие все то что происходит в полости кишки: кислотность содержимого, его состав, ну и конечно же — давление и степень растяжения кишечной стенки
нейроны кишечника александр догель

Для понимания механизма работы остановимся нейронах 3 типа. Это посредники. Они передают от клеток воспринимающих (рецепторных нейронов) к клеткам активаторам (моторные нейроны).
Видов нейронов на самом деле больше и многие их функции еще неясны. Благодаря иммуногистохимии и электронной микроскопии ученые сейчас выделяют 15 типов нервных клеток — тех «кирпичиков» из которых строится энтеральная нервная система

Как устроена нервная система кишечника

Основные ее компоненты — межмышечное сплетение (Ауэрбахово) — располагается между продольным и циркулярным мышечным слоем и подслизистое нервное сплетение (сплетение Мейсснера), расположенное под слизистой оболочкой кишки.
нейрон слой стенка кишечник
Ауэрбахово сплетение более развито и его задача — координированное расслабление и сокращение гладкой мускулатуры кишки.

В межмышечном сплетении располагается большая часть мотонейронов и клеток посредников — интернейронов.

Сплетение Мейсснера воспринимает происходящее в просвете кишечника и регулирует выделение кишечных соков и кровообращение. Здесь в основном определяются большие нейроны 2 типа

«Выполнить приказ»,»отставить приказ»

Теперь о нейронах посредниках. На рисунке они зеленые. Одни из них активируют моторный нейрон, другие наоборот, приводят к его торможению.

схема нервная система кишечника

Желтые — воспринимающие нейроны, зеленые — интернейроны, красные — нейроны моторные.Стрелками показаны пути стимулирующие (красная) и тормозящие (зеленая). Или парасимпатическое и симпатическое сплетение соответственно. Сенсорные нейроны могут действовать и на тот и на другой путь.

Такая разница связана с тем что интернейроны отдают команды посредством разных химических веществ — медиаторов. В области контакта аксона с нервной клеткой имеется утолщение. Это синапс, или синаптический контакт. В этой «шишечке» со стороны аксона вещество выделяется, а на стороне другой нервной клетки оно воспринимается рецептором. Весь эффект и будет определяться тем, какое вещество содержит этот синаптический контакт.

Видов медиаторов более тридцати. Ключевые: ацетилхолин — медиатор, который стимулирует мотонейрон (следовательно, кишка будет сокращаться, будет вырабатываться кишкой слизь, будет усиливаться кровообращение) и норадреналин, который действует взаимно противоположно (кишечник расслабляется, ослабляется кровоток, снижается выработка кишечных соков).
Симпатика — норадреналин, парасимпатика — ацетилхолин.
нервно мышечная передача кишечник

В заключение

Если уж быть объективным, то почти половина всех медицинских препаратов и связана с воздействием на на синаптическую передачу. Есть в кишечнике и опиатные рецепторы. Поэтому у страдающих наркотической зависимостью могут наблюдаться тяжелейшие запоры. В 50 годах прошлого века для купирования стула после проктологической операции (стула не было до 5 суток) применялся морфин. Нарушение нервно-мышечной передачи у пациентов с болезнью Паркинсона приводит к упорным запорам. Запоры наблюдаются у душевно больных людей после приема нейролептиков. А вот никотин способен стимулировать ацетилхолиновые рецепторы, поэтому после курения может захотеться в туалет.

Врожденное недоразвитие нервных ганглиев приводит к болезни Гиршпрунга и интестинальной нейронной дисплазии.

Теперь об одной из основных функций: перистальтике.

Если вы нашли опечатку в тексте, пожалуйста, сообщите мне об этом. Выделите фрагмент текста и нажмите Ctrl+Enter.

Источник

Нервная система кишечника: энтеральная нервная система

Энтеральная нервная система (ЭНС), представленная на рисунке ниже, начинается от середины пищевода и распространяется до анального отверстия. На всем протяжении она контролирует перистальтику, секрецию желез, транспорт воды и ионов. Энтеральная нервная система (ЭНС) также иннервирует поджелудочную железу, печень и желчный пузырь. Было подсчитано, что число внутренних нейронов в стенке ЖКТ приблизительно равно числу нейронов во всем спинном мозге. В силу своих размеров и относительной функциональной независимости энтеральной нервной системы (ЭНС) даже получила название «второй мозг».

Внутренние нейроны кишечника в основном входят в состав двух интрамуральных сплетений, а именно — межмышечного нервного сплетения (ауэрбахова сплетения), располагающегося между продольным и циркулярным слоем гладких мышц, и меньшего по размеру подслизистого сплетения (сплетения Мейснера). Основную роль в регуляции деятельности мышц и желез ЖКТ играет парасимпатический отдел вегетативной нервной системы (ВНС).

Заднее моторное ядро блуждающего нерва дает начало преганглионарным парасимпатическим волокнам (1), иннервирующим все части ЖКТ, за исключением дистальных отделов толстой кишки и прямой кишки. Данные отделы получают пре-ганглионарную иннервацию от тазовых внутренностных нервов (предшественники которых—клетки интермедиалатерального клеточного ствола уровня крестцовых сегментов S2-S4 спинного мозга). Стимуляция моторики ЖКТ осуществляется интрамуральными ганглионарными нейронами, локализованными в обоих интрамуральных сплетениях.

При возбуждении расширенных на концах постганглионарных волокон межмышечного нервного сплетения осуществляются два параллельных процесса (2): в области контакта с нервным волокном происходит сокращение мышц кишки (распространение волны перистальтики) (3), а дистальнее его — расслабление мышц путем активации ингибиторных нейронов (4). Парасимпатические ганглионарные клетки в стенке желчного пузыря отвечают за выброс желчи, а в подслизистом сплетении (5) и поджелудочной железе—за секрецию желез.

Энтеральная нервная система - нервная система кишечника

Перистальтика кишечника продолжается даже в условиях его полной внешней денервации за счет проведения возбуждения по внутренним сетям и спонтанной нейронной активности участков пейсмекерных клеток на гладких мышцах (в частности, в желудке и двенадцатиперстной кишке).

Преганглионарные симпатические волокна идут от нейронов боковых рогов грудных сегментов Т5-Т11 спинного мозга. Данные волокна, не переключаясь, пересекают паравертебральные симпатические стволы (6) и образуют синапсы с превертебральными внутренностными ганглиями (7) брюшной полости (чревный, верхний и нижний брыжеечные ганглии). Расширенные на концах постганглионарные волокна от этих ганглиев иннервируют гладкие мышцы кишечника, а также кровеносные сосуды (происходит их расслабление за счет активации β2-рецепторов).

Возбуждение от периферии к ЦНС проводится по висцеральным афферентам (униполярным нейронам), тела которых находятся в нодозном ганглии блуждающего нерва (8) и в ганглиях задних корешков сегментов Т5-Т11 спинного мозга (9). Спинальные афференты идут к задним рогам спинного мозга в составе передних корешков. Эти афференты имеют особое клиническое значение, так как они включают ноцицептивные афференты первого порядка. На центральном уровне ноцицептивные афференты образуют синапсы с латеральными спиноталамическими проекционными нейронами, формируя восходящий путь болевой чувствительности в ЦНС.

Нейроны внутренностных висцеральных афферентов имеют биполярное строение. Некоторые из них образуют локальные рефлекторные дуги в составе межмышечного и подслизистого нервных сплетений. Другие (не показанные на рисунке) нейроны идут к внутренностным ганглиям, образуя более распространенные рефлекторные дуги.

В энтеральных ганглионарных клетках представлено множество нейромедиаторов и регуляторных веществ. Основной нейромедиатор возбуждения — АХ, влияние которого регулирует выделяющаяся совместно с ним субстанция Р. Основные ингибирующие нейромедиаторы — оксид азота, γ-аминомасляная кислота (ГАМК) и вазоактивный интестинальный пептид (VIP). Кроме того, множество регуляторных белков обнаружено в гистохимических реакциях (чаще всего два или более таких белков присутствуют в каждой клетке).

Активация ноцицептивных нейронов кишечника
Процесс активации ноцицептивных нейронов стенки кишечника.

(1) Высвобождаемый энтерохромаффинными клетками серотонин активирует ноцицептивный нейрон, идущий к задним рогам спинного мозга.

(2) Противоположный ток импульсов вызывает выделение субстанции Р, которая, в свою очередь, отвечает за высвобождение гистамина из тучных клеток.

(3) Гистамин усиливает действие серотонина.

– Также рекомендуем “Нервная система нижних отделов мочевого пузыря. Схема иннервации сфинктеров мочевого пузыря”

Редактор: Искандер Милевски. Дата публикации: 14.11.2018

Источник

Читайте также:  Кишечная амеба 3 формы их строение и распространение