В митохондриях кишечной палочки запасаются молекулы атф

В митохондриях кишечной палочки запасаются молекулы атф

Американские биологи заставили кишечную палочку поселиться внутри клеток дрожжей и выполнять функции сломанных митохондрий. Результаты эксперимента, который имитирует ранние этапы эволюции митохондрий, описаны в статье, опубликованной в журнале Proceedings of the National Academy of Sciences.

Митохондрия — важнейшая органелла клеток человека, а заодно и практически всех других эукариотических организмов, главная энергетическая станция клетки. На ней углеводы окисляются под воздействием кислорода, а выделившаяся при этом энергия запасается впрок. Из цитоплазмы туда поступают «разряженные» клеточные «батарейки» — молекулы АДФ. Там они «заряжаются», превращаясь в молекулы АТФ, покидают митохондрию и используются дальше на нужды клетки.

Еще в начале XX века ученые заметили, что митохондрии (и хлоропласты растений) удивительно похожи на бактерий, а в 1970-х годах Линн Маргулис и ее последователи свели сведения об этом в теорию эндосимбиоза. Согласно ей, все митохондрии были раньше свободноживущими бактериями, способными очень эффективно перерабатывать углеводы при помощи кислорода, а потом попали внутрь предковой эукариотической клетки. По каким-то причинам они не были переварены, как это обычно происходит, а остались целы. Клетка-хозяин предоставила им укрытие, стала снабжать разными необходимыми веществами, а симбионты, в свою очередь, стали снабжать клетку энергией.

С того момента бывшая свободноживущая бактерия сильно видоизменилась и настолько приспособилась к жизни внутри клетки, что теперь считается ее частью. Например, в митохондриях осталась лишь короткая ДНК с самым базовым набором генов, тогда как большая их часть исчезла за ненадобностью или переехала жить в ядерный геном. Поскольку симбиоз случился довольно давно — больше полутора миллиардов лет назад, — разобраться в ранних этапах со-настройки предков эукариот и их митохондрий времена довольно сложно. В основном это делается при помощи реконструкции на основе современных митохондрий.

Ангад Мехта (Angad Mehta) из Института Скриппс и его коллеги из нескольких калифорнийских институтов подошли к решению этого вопроса с неожиданной стороны. Они предложили создать для исследований синтетическую модель свежего эндосимбиоза бактерий и эукариот, «подружив» два современных свободноживущих организма: дрожжи (Saccharomyces cerevisiae) и кишечную палочку (Escherichia coli). Для получения корректной и жизнеспособной модели оказалось необходимым правильно подготовить встречу потенциальных симбионтов.

Для начала клетки дрожжей «заинтересовали» в симбиозе. Поскольку у современных эукариот уже есть митохондрии, исследователи попытались их «отключить». Для эксперимента сперва взяли клетки дрожжей, у которых вообще не было митохондриальной ДНК. Поскольку в ней закодировано все самое нужное для работы митохондрий, то такие клетки жили очень плохо и только на специальной питательной среде, не требующей переработки углеводов митохондриями. Кроме этого, ученые взяли дрожжи, в которых митохондрии были покалечены чуть меньше — в них испортили всего один, но важный ген cox2.

В пару к дрожжам была подобран симбионт — такой, в присутствие которого которого эти поломки бы компенсировались. Кишечная палочка Esherichia coli — модельная бактерия в биологии — относительно близкий родственник предков митохондрий. Тем не менее, ее тоже пришлось адаптировать чтобы научить дорожить дружбой с дрожжами. Во-первых, ей сломали путь биосинтеза тиамина (он же витамин B1). Теперь она могла расти только в среде, в которой он есть, например с дрожжами. Во-вторых, её заставили делиться энергией с потенциальным хозяином. В качестве аккумуляторов энергии клетки используют АТФ, и в нормальных эукариотических клетках в мембрану митохондрии встроен транспортер, который позволяет АТФ проходить из митохондрии в цитоплазму, а молекулам АДФ («разряженный аккумулятор») обратно. У кишечной палочки такого транспортера не предусмотрено, и поэтому его пришлось вставить его из другой бактерии. Помимо того, кишечной палочке добавили ген зеленого флуоресцентного белка чтобы бактерию было легко различить с помощью микроскопии.

После того, как организмы были подготовлены ко встрече друг с другом, их посадили вместе, и дальше, чтобы отобрать варианты с удачным симбиозом, начали растить на среде, для переработки которой дрожжам бы понадобилась помощь кишечных палочек. Оказалось, что дрожжи без митохондриальной ДНК не выживают в таких условиях, а дрожжи с выключенным cox2 геном образуют очень маленькое число колоний. По идее, эти колонии могли выжить за счет бактерий, которые их окружали, и не формировать эндосимбиоз. Чтобы учесть такой вариант, исследователи пересадили эти колонии на среду, в которой не могут расти отдельно ни дрожжи, ни кишечные палочки (без тиамина и без альтернативных источников энергии). Оказалось, что в таких условиях не выжил никто.

Чтобы еще больше увеличить вероятность удачного симбиоза, исследователи решили повлиять на способность бактерий не перевариваться внутри дрожжей. У патогенных бактерий есть для этой цели специальные SNARE-подобные белки. Они помогают манипулировать везикулярным транспортом хозяина и избежать попадания в лизосому — «желудок клетки». Кишечную палочку, которая к этому моменту уже синтезировали флуоресцентный белок и светилась зеленым светом, не росла без тиамина и могла выпускать АТФ наружу клетки, исследователи наделили вдобавок SNARE-подобными генами из патогенной хламидии, и повторили эксперимент еще раз. На этот раз было обнаружено много химерных организмов из дрожжевой клетки с бактериями внутри, которые поддерживались на протяжении нескольких поколений. Чтобы полностью исключить возможность внешнего симбиоза, исследователи добавили в среду антибиотик, но и в этом случае колонии химер не исчезали даже после нескольких раундов пересаживания со среды на среду.

Авторы статьи считают, что подобная синтетическая модель эндосимбиоза позволит лучше разобраться в том, как происходила коэволюция митохондрии и эукариотической клетки, в том числе — как уменьшался бактериальный геном (свободноживущая бактерия обычно имеет несколько тысяч разных генов, тогда как в геноме митохондрии их не больше ста). Например, они попробовали убрать из него еще один важный ген и оказалось, что химеры с такими кишечными палочками тоже вполне жизнеспособны.

Вера Мухина

Источник

АТФ и его роль в клетке. Функции митохондрий клетки

Основным источником энергии для клетки являются питательные вещества: углеводы, жиры и белки, которые окисляются с помощью кислорода. Практически все углеводы, прежде чем достичь клеток организма, благодаря работе желудочно-кишечного тракта и печени превращаются в глюкозу. Наряду с углеводами расщепляются также белки — до аминокислот и липиды — до жирных кислот.В клетке питательные вещества окисляются под действием кислорода и при участии ферментов, контролирующих реакции высвобождения энергии и ее утилизацию.

Читайте также:  Группа кишечной палочки в воде

Почти все окислительные реакции происходят в митохондриях, а высвобождаемая энергия запасается в виде макроэргического соединения — АТФ. В дальнейшем для обеспечения внутриклеточных метаболических процессов энергией используется именно АТФ, а не питательные вещества.

Молекула АТФ содержит: (1) азотистое основание аденин; (2) пентозный углевод рибозу, (3) три остатка фосфорной кислоты. Два последних фосфата соединены друг с другом и с остальной частью молекулы макроэргическими фосфатными связями, обозначенными на формуле АТФ символом ~. При соблюдении характерных для организма физических и химических условий энергия каждой такой связи составляет 12000 калорий на 1 моль АТФ, что во много раз превышает энергию обычной химической связи, поэтому фосфатные связи и называют макроэргическими. Более того, эти связи легко разрушаются, обеспечивая внутриклеточные процессы энергией сразу, как только в этом возникает необходимость.

При высвобождении энергии АТФ отдает фосфатную группу и превращается в аденозиндифосфат. Выделившаяся энергия используется практически для всех клеточных процессов, например в реакциях биосинтеза и при мышечном сокращении.

Синтез АТФ
Схема образования аденозинтрифосфата в клетке, показывающая ключевую роль митохондрий в этом процессе.

GI – глюкоза; FA – жирные кислоты; АА – аминокислота.

Восполнение запасов АТФ происходит путем воссоединения АДФ с остатком фосфорной кислоты за счет энергии питательных веществ. Этот процесс повторяется вновь и вновь. АТФ постоянно расходуется и накапливается, поэтому она получила название энергетической валюты клетки. Время оборота АТФ составляет всего несколько минут.

Роль митохондрий в химических реакциях образования АТФ. При попадании внутрь клетки глюкоза под действием ферментов цитоплазмы превращается в пировиноградную кислоту (этот процесс называют гликолизом). Энергия, высвобождаемая в этом процессе, затрачивается на превращение небольшого количества АДФ в АТФ, составляющего менее 5% общих запасов энергии.

Синтез АТФ на 95% осуществляется в митохондриях. Пировиноградная кислота, жирные кислоты и аминокислоты, образующиеся соответственно из углеводов, жиров и белков, в матриксе митохондрий в итоге превращаются в соединение под названием «ацетил-КоА». Это соединение, в свою очередь, вступает в серию ферментативных реакций под общим названием «цикл трикарбоновых кислот» или «цикл Кребса», чтобы отдать свою энергию.

В цикле трикарбоновых кислот ацетил-КоА расщепляется до атомов водорода и молекул углекислого газа. Углекислый газ удаляется из митохондрий, затем — из клетки путем диффузии и выводится из организма через легкие.

Атомы водорода химически очень активны и поэтому сразу вступают в реакцию с кислородом, диффундирующим в митохондрии. Большое количество энергии, выделяющейся в этой реакции, используется для превращения множества молекул АДФ в АТФ. Эти реакции достаточно сложны и требуют участия огромного числа ферментов, входящих в состав крист митохондрий. На начальном этапе от атома водорода отщепляется электрон, и атом превращается в ион водорода. Процесс заканчивается присоединением ионов водорода к кислороду. В результате этой реакции образуются вода и большое количество энергии, необходимой для работы АТФ-синтетазы — крупного глобулярного белка, выступающего в виде бугорков на поверхности крист митохондрий. Под действием этого фермента, использующего энергию ионов водорода, АДФ превращается в АТФ. Новые молекулы АТФ направляются из митохондрий ко всем отделам клетки, включая ядро, где энергия этого соединения используется для обеспечения самых разных функций.

Данный процесс синтеза АТФ в целом называют хемиосмотическим механизмом образования АТФ.

АТФ
АТФ
Использование аденозинтрифосфата митохондрий для реализации трех важных функций клетки:

мембранного транспорта, синтеза белка и мышечного сокращения.

Учебное видео: строение митохондрий и их функции

Видео строения митохондрий и их функций

– Также рекомендуем “Как используется АТФ клеткой? Амебоидное движение клетки”

Оглавление темы “Физиология клетки и его ядра”:

1. Характеристика клетки. Эндоцитоз и пиноцитоз

2. Фагоцитоз. Функции лизосом клетки

3. Аппарат Гольджи. Синтез в эндоплазматическом ретикулуме

4. АТФ и его роль в клетке. Функции митохондрий клетки

5. Как используется АТФ клеткой? Амебоидное движение клетки

6. Хемотаксис. Роль ресничек клетки

7. Механизмы движения ресничек. Гены в ядре клетки

8. Образование двух цепей ДНК. Генетический код

9. Транскрипция. Виды и типы РНК клеток

10. Рибосомная РНК. Синтез белка на рибосомах клетки

Источник

Оглавление темы “Дыхание ( аэробное, анаэробное ). Катаболизм у бактерий. Конструктивный метаболизм ( пластический обмен ). Рост бактерий в культуре.”:

1. Пропионовокислое брожение. Маслянокислое и ацетонобутиловое брожение. Гомоацетатное брожение. Получение энергии окислительным фосфорилированием. Дыхание.

2. Катаболизм углеводов у бактерий. Гликолиз. Гликолитический путь окисления. Путь Эмбдена-Мейерхофа-Парнаса. Пентозофосфатный путь окисления. Схема Варбурга-Диккенса-Хореккера-Рэкера.

3. Путь Энтнера-Дудорова у бактерий. Цикл Кребса. Цикл трикарбоновых кислот у бактерий.

4. Катаболизм азотсодержащих органических соединений бактериями. Аминокислоты. Декарбоксилирование и дезаминирование аминокислот бактериями. Механизм Стиклэнда.

5. Катаболизм жиров и жирных кислот бактериями. Эндогенный энергетический метаболизм бактерий.

6. Конструктивный метаболизм ( пластический обмен ). Углеродные соединения для биосинтетических реакций бактерий. Биосинтез аминокислот и белков бактериями.

7. Биосинтез нуклеотидов и нуклеиновых кислот бактериями.

8. Биосинтез олигосахаридов и полисахаридов бактериями. Биосинтез липидов ( жиров ) бактериями.

9. Регуляция метаболизма микроорганизмов. Аллостерические белки.

10. Рост бактерий в культуре. Фазы роста бактерий. Лаг фаза роста. Экспоненциальная фаза роста бактерий. Стационарная фаза роста.

Читайте также:  Лечим цистит вызванный кишечной палочкой

Пропионовокислое брожение. Маслянокислое и ацетонобутиловое брожение. Гомоацетатное брожение. Получение энергии окислительным фосфорилированием. Дыхание.

Пропионовокислое брожение

Пируват или лактат карбоксилируется до оксалоацетата, затем оксалоацетат преобразуется в пропионовую кислоту через метилмалонил-коэнзим А у большинства пропионовых бактерий и через акрилоил-коэнзим А у Clostridium propionicum и Bacteroides ruminicola.

Маслянокислое и ацетонобутиловое брожение

Масляная кислота (бутират), бутанол, ацетон, 2-пропанол и ряд других органических кислот и спиртов — типичные продукты сбраживания углеводов анаэробными спорообразующими бактериями (клостридиями). Если споры С. histolyticum или С septicum попадают в открытую рану, где нет доступа воздуха, то они начинают расти, образуя дурно пахнущие продукты брожения.

Гомоацетатное брожение

Некоторые клостридии (С. formicoaceticum, С. acidi-urici) способны переносить водород, отщепляемый от субстрата, только на С02. При этом образуется исключительно ацетат.

Пропионовокислое брожение. Маслянокислое и ацетонобутиловое брожение. Гомоацетатное брожение. Получение энергии окислительным фосфорилированием.

Получение энергии окислительным фосфорилированием

У всех дышащих бактерий имеется система транспорта электронов (дыхательная цепь). К компонентам этой системы относят локализованные в мембране ферменты с относительно прочно связанными низкомолекулярными простетическими группами. У эукариотов такие ферменты локализуются на внутренней мембране митохондрий, у прокариотов — в плазматической мембране.

Перенос электронов осуществляется по следующей стандартной схеме: органический субстрат – НАД – флавопротеины – железосерные белки – хиноны – цитохромы (а, b, с) -конечный акцептор (молекулярный кислород либо иной акцептор электронов). При движении электронов по дыхательной цепи создаётся градиент протонов, энергия которого запасается в виде АТФ в процессе окислительного фосфорилирования.

В дыхательной цепи имеются только три точки окисления, в каждой из которых освобождается столько энергии, сколько содержится в одной высокоэнергетической связи АТФ. При переносе пары протонов от НАД+ на кислород может образоваться 3 молекулы АТФ. При использовании в качестве субстрата сукцината, от которого водород включается в цепь только на уровне флавопротеинов, образуется 2 молекулы АТФ. Фумаратное дыхание сопряжено с образованием 1 молекулы АТФ.

Наиболее часто бактерии получают энергию в результате окисления органических субстратов (чаще всего углеводов) до С02 и Н20; иначе этот процесс известен как дыхание. Следует помнить, что дыханием следует считать окисление не только органических субстратов, так как бактерии могут окислять вещества, не подверженные ассимиляции, например сероводород или трёхвалентное железо (так называемое «сероводородное дыхание», «железное дыхание»).

Пропионовокислое брожение. Маслянокислое и ацетонобутиловое брожение. Гомоацетатное брожение. Получение энергии окислительным фосфорилированием.

Если в реакциях окисления органических и неорганических веществ дегидрогеназами конечным акцептором электронов служит молекулярный кислород, то такой тип метаболизма называют аэробное дыхание. При этом молекулярный кислород переходит в ион О2. Пары протонов, отщеплённые от органических субстратов, взаимодействуя с ионизированным кислородом при аэробном дыхании, образуют воду. Если терминальными акцепторами электронов выступают соединения, содержащие «связанный кислород» (нитраты, нитриты, сульфаты, карбонаты, а также способные к восстановлению элементная сера, трёхвалентное железо и органический акцептор — фумарат), то такой тип метаболизма называют анаэробное дыхание.

Аэробное дыхание — наиболее распространённый процесс получения энергии среди комменсалов и патогенных для человека бактерий. Анаэробное дыхание осуществляют факультативно анаэробные бактерии и строгие анаэробы. Многие факультативные анаэробы при отсутствии кислорода в качестве акцепторов электронов используют нитраты (процесс известен как нитратное дыхание). При этом образуются характерные продукты восстановления — нитриты и другие восстановленные формы азота, что используют на практике для идентификации бактерий. В зависимости от природы утилизируемого соединения выделяют бактерии органотрофы использующие в качестве доноров водорода и электронов органические вещества, и бактерии литотрофы [от греч. lithos, камень, + trophe, питание], использующие в тех же целях неорга нические соединения (Н2, NH3, H2S, S, СО, двухвалентное железо и др.). Среди хемолитотроф ных бактерий имеющих медицинское значение видов не обнаружено. Обычно ограничивают указанием на основной способ получения энергии и природу донора водорода и электронов.

• Кишечную палочку, таким образом, относят к хемоорганотрофам, так как она получает энергию путём окисления химических соединений, используя в качестве донора водорода и элек тронов органические соединения.

• Нитрифицирующие бактерии относят к хемолитотрофам, а растения, цианобактерии и пур пурные серобактерии — к фотолитотрофам.

– Также рекомендуем “Катаболизм углеводов у бактерий. Гликолиз. Гликолитический путь окисления. Путь Эмбдена-Мейерхофа-Парнаса. Пентозофосфатный путь окисления. Схема Варбурга-Диккенса-Хореккера-Рэкера.”

Источник

МЕТАБОЛИЗМ. КАТАБОЛИЗМ И АНАБОЛИЗМ

Совокупность реакций обмена веществ, протекающих в организме, называется метаболизмом.

Процессы синтеза специфических собственных веществ из более простых называется анаболизмом, или ассимиляцией, или пластическим обменом. В результате анаболизма образуются ферменты, вещества, из которых построены клеточные структуры, и т.п. Этот процесс, как правило, сопровождается большим потреблением энергии.

Эта энергия получается организмом в других реакциях, в которых более сложные вещества расщепляются до простых. Эти процессы называются катаболизмом, или диссимиляцией, или энергетическим обменом. Продуктами катаболизма у аэробных организмов являются СО2, Н2О, АТФ и

Читайте также:  В мазке из влагалища обнаружена кишечная палочка

восстановленные переносчики водорода (НАД∙Н и НАДФ∙Н), которые принимают атомы водорода, отщепляемые от органических веществ в процессах окисления. Некоторые низкомолекулярные вещества, которые образуются в ходе катаболизма, в дальнейшем могут служить предшественниками необходимых клетке веществ (пересечение катаболизма и анаболизма).

Катаболизм и анаболизм тесно связаны: анаболизм использует энергию и восстановители, образующиеся в реакциях катаболизма, а катаболизм осуществляется под действием ферментов, образующихся в результате реакций анаболизма.

В митохондриях кишечной палочки запасаются молекулы атф

Как правило, катаболизм сопровождается окислением используемых веществ, а анаболизм — восстановлением.

пластический обмен (анаболизм)энергетический обмен (катаболизм)
синтез и накопление (ассимиляция) сложных веществ распад сложных веществ на простые (диссимиляция)
 идет с затратой энергии (расходуется АТФ) выделяется энергия (синтезируется АТФ)
может быть источником органических веществ для энергетического обмена является источником энергии для пластического обмена

 Пример:

биосинтез белков, жиров, углеводов;

фотосинтез (синтез углеводов растениями и сине-зелеными водорослями);

хемосинтез

 Пример:

анаэробное дыхание ( = гликолиз = брожение);

аэробное дыхание (окислительное фосфорилирование)

Реакции анаболизма у разных организмов могут иметь некоторые отличия (см. тему “Способы получения энергии живыми организмами”).

АТФ — аденозинтрифосфат

В процессе катаболизма выделяется энергия в виде тепла и в виде АТФ.

В митохондриях кишечной палочки запасаются молекулы атф

АТФ — единый и универсальный источник энергообеспечения клетки.

АТФ нестабильна.

АТФ является “энергетической валютой”, которую можно потратить на синтезы сложных веществ в реакциях анаболизма.

В митохондриях кишечной палочки запасаются молекулы атф

Гидролиз (распад) АТФ:

АТФ + НО = АДФ + НРО + 40 кДж/моль

Энергетический обмен

Живые организмы получают энергию в результате окисления органических соединений.

Окисление — процесс отдачи электронов.      

Расход полученной энергии:

50% энергии выделяется в виде тепла в окружающую среду;

50% энергии идет на пластический обмен (синтез веществ).

В клетках растений:

крахмал  → глюкоза →  АТФ

В клетках животных:

гликоген  → глюкоза →  АТФ

Подготовительный этап

Ферментативное расщепление сложных органических веществ до простых в пищеварительной системе:

  • белковые молекулы — до аминокислот

  • липиды — до глицерина и жирных кислот

  • углеводы — до глюкозы

Распад (гидролиз) высокомолекулярных органических соединений осуществляется или ферментами желудочно-кишечного тракта или ферментами лизосом.

Вся высвобождающаяся при этом энергия рассеивается в виде тепла.

Простые вещества всасываются ворсинками тонкого кишечника:

  • аминокислоты и глюкоза — в кровь;

  • жирные кислоты и глицерин — в лимфу;

и переносятся к клеткам тканей организма.

Образовавшиеся небольшие органические молекулы могут быть использованы в качестве «строительного материала» или могут подвергаться дальнейшему расщеплению (гликолизу).

На подготовительном этапе может происходить гидролиз запасные вещества клеток: гликогена — у животных (и грибов) и крахмала — у растений. Гликоген и крахмал являются полисахаридами и распадаются на мономеры — молекулы глюкозы.

Гликоген печени используется не столько для собственных нужд печени, сколько для поддержания постоянной концентрации глюкозы в крови, и, следовательно, обеспечивает поступление глюкозы в другие ткани.

В митохондриях кишечной палочки запасаются молекулы атф

Рис. Функции гликогена в печени и мышцах

Гликоген, запасенный в мышцах, не может распадаться до глюкозы из-за отсутствия фермент. Функция мышечного гликогена заключается в освобождении глюкозо-6-фосфата, потребляемого в самой мышце для окисления и использования энергии.

Распад гликогена до глюкозы или глюкозо-6-фосфата не требует энергии.

Гликолиз (анаэробный этап)

Гликолиз — расщепление глюкозы с помощью ферментов.

Идет в цитоплазме, без кислорода.

Во время этого процесса происходит дегидрирование глюкозы, акцептором водорода служит кофермент НАД+ (никотинамидадениндинуклеотид).

Глюкоза в результате цепочки ферментативных реакций превращается в две молекулы пировиноградной кислоты (ПВК), при этом суммарно образуются 2 молекулы АТФ и восстановленная форма переносчика водорода НАД·Н2:

СНО + 2АДФ + 2НРО + 2НАД → 2СНО + 2АТФ + 2НО + 2(НАДНН).

Дальнейшая судьба ПВК зависит от присутствия кислорода в клетке:

если кислорода нет, у дрожжей и растений происходит спиртовое брожение, при котором сначала происходит образование уксусного альдегида, а затем этилового спирта:

СНО → СО + СНСОН,

СНСОН + НАДНН → СНОН + НАД.

У животных и некоторых бактерий при недостатке кислорода происходит молочнокислое брожение с образованием молочной кислоты:

СНО + НАДНН → СНО + НАД.

В результате гликолиза одной молекулы глюкозы высвобождается 200 кДж, из которых 120 кДж рассеивается в виде тепла, а 80кДж запасается в связях 2 молекул АТФ.

дыхание, или Окислительное фосфорилирование (аэробный этап)

Окислительное фосфорилирование — процесс синтеза АТФ с участием кислорода.

Идет на мембранах крист митохондрий в присутствии кислорода.

Пировиноградная кислота, образовавшаяся при бескислородном расщеплении глюкозы, окисляется до конечных продуктов СО2 и Н2О. Этот многоступенчатый ферментативный процесс называется циклом Кребса, или циклом трикарбоновых кислот.

В результате клеточного дыхания при распаде двух молекул пировиноградной кислоты синтезируются 36 молекул АТФ:

2СНО  + 32О + 36АДФ + 36НРО → 6СО + 58НО + 36АТФ.

Кроме того, нужно помнить, что две молекулы АТФ запасаются в ходе бескислородного расщепления каждой молекулы глюкозы.

Суммарная реакция расщепления глюкозы до углекислого газа и воды выглядит следующим образом:

СНО + 6О + 38АДФ → 6СО + 6НО + 38АТФ + Qт,

где Qт — тепловая энергия.

Таким образом при окислительном фосфорилировании образуется в 18 раз больше энергии (36 АТФ), чем при гликолизе (2 АТФ).

Гликолиз используют некоторые бактерии и паразиты, обитающие в анаэробных условиях.

Источник